LUO Yan, FENG Min-fu. Discontinuous Element Pressure Gradient Stabilizations for the Compressible Navier-Stokes Equations Based on Local Projections[J]. Applied Mathematics and Mechanics, 2008, 29(2): 157-168.
 Citation: LUO Yan, FENG Min-fu. Discontinuous Element Pressure Gradient Stabilizations for the Compressible Navier-Stokes Equations Based on Local Projections[J]. Applied Mathematics and Mechanics, 2008, 29(2): 157-168.

# Discontinuous Element Pressure Gradient Stabilizations for the Compressible Navier-Stokes Equations Based on Local Projections

• Received Date: 2007-06-28
• Rev Recd Date: 2008-01-03
• Publish Date: 2008-02-15
• A pressure gradient discontinuous finite element formulation for the compressible Navier-Stokes equations based on local projections was derived.The resulting finite element formulation is stable and uniquely solvable without requiring a B-B stability condition.An error estimate was obtained.
•  [1] Reed W H,Hill T R.Triangular mesh methods for the neutron transport equation[R]. Technical Report LA-UR -73-479,Los Alamos Scientific Laboratory,1973. [2] Cockburn B,Shu C W.TVB Runge-Kutta local projection discontinuous Galerkin finite element method for conservation lawsⅡ:general framework[J].Math Comp,1989,52(186):411-435. [3] Cockburn B,Lin S Y.TVB Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws Ⅲ:one -dimensional systems[J].J Comp Phys,1989,84(1):90-113. [4] Cockburn B,Shu C W.TVB Runge-Kutta discontinuous Galerkin methods for conservation laws V:Multidimensional systems[J].J Comp Phys,1998,144(1):199-224. [5] Arnold D,Brezzi F,Cockburn B,et al.Unified analysis of discontinuous Galerkin methods for elliptic problem[J].SIAM J Numer Anal,2002,39(5):1749-1779. [6] Brezzi F,Manzini G,Marini D,et al.Discontinuous Galerkin approximation for elliptic problems[J].Numer Methods Partial Differential Equations,2000,16(4):365-378. [7] Babuska I,Zlamal M. Noncomforming elements in the finite element method with penalty[J].SIAM J Numer Anal,1973,10(2):863-875. doi: 10.1137/0710071 [8] Cockburn B,Kanschat G,Schotzau，et al.Local discontinuous Galerkin methods for the Stokes system[J].SIAM J Numer Anal,2002,40(1):319-343. [9] YE Xiu.Discontinuous stable elements for the incompressible flow[J].Advances Comp Math,2004,20:333-345. [10] 骆艳，冯民富.Stokes方程的稳定化间断有限元法[J]. 计算数学,2006,28(2):163-174. [11] Bassi F,Rebay S.A high-order accurate discontinuous finite element method for the numerical solution of the compressible Navier-Stokes equations[J].J Comp Phys,1997,131(2):267-279. [12] Bassi F,Rebay S.Numerical evaluation of two discontinuous Galerkin methods for the compressible Navier-Stokes equations[J].Internat J Numer Methods Fluids,2002,40(2):197-207. doi: 10.1002/fld.338 [13] Girault V,Raviart P A.Finite Element Methods for Navier-Stokes Equations[M].Lecture Notes in Math.Vol 749.Berlin and New York:Spring-Verlag,1981. [14] Hughes T J,Brooks A. A multidimensional upwind scheme with bo crosswind diffusion[A].In:Hughes T J,Ed.Finite Element Methods for Convection Dominated Flows[C].34.New York:ASME,1979,19-35. [15] Johnson C. Steamline diffusion methods for problems in fluid mechanics[A].In:Gallagher R H, Carey G F, Oden J T,Zienkiewicz O C,Eds.Finite Element in Fluids[C].London；New York:John Wiley and Sons,1986. [16] Brook A N, Hughes T J R.Streamline upwind/Petrov-Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier-Stokes equation[J].Comp Methods Appl Mech Engrg,1982,32(2):199-259. [17] Hansbo P. A Velocity-pressure streamline diffusion finte element method for incompressible Navier-Stokes equations[J].Comput Methods Appl Mech Engrg,1990,84(2):175-192. [18] Johnson C,Saranen J.Streamline diffusion methods for the incompressible Euler and Navier-Stokes equationa[J].Math Comp,1986,47(175):1-18. [19] Tabata M. On a conservative upwind finite element scheme for convective-diffusion equations[J].RAIRO Anal Numer,1981,15:3-25. [20] Franca L P,Hughes T J. Two classes of mixed finite element methods[J].Comput Methods Appl Mech Engrg,1988,69(1):89-129. [21] ZHOU Tian-xiao,FENG Min-fu.A least squares Petrov-Galerkin finite element method for the stationary Navier-Stokes equations[J].Math Comp,1993,60(202): 531-543. [22] Bochev P, Dohrmann C，Gunzburger M. Stabilization of low-order mixed finite elements for the Stokes equations[J].SIAM J Numer Anal,2006,44(1):82-101. [23] Blasco J,Codina R. Stabilized finite element method for the transient Navier-Stokes equations based on a pressure gradient projection[J].Comp Methods Appl Mech Engrg,2000,182(3):277-300. [24] Bruce Kellogg R,LIU Bi-yue. A finite element method for the compressible Stokes equation[J].SIAM Numer Anal,1996,33(2):780-788. doi: 10.1137/0733039 [25] Bruce R,Liu B.A penalized finite element method for a compressible Stokes system[J].SIAM J Numer Anal,1997,34(3):1093-1105. [26] Lesaint P,Raviart P A. On a finite element method for solving the neutron transport equation[A].In:C de Boor,Ed.Mathematical Aspects of Finite Elements in Paritial Differential Equations[C].New York:Academic Press,1974,89-145. [27] Braack M,Burman E. Local projection stabilization for the ossen problem and its interpretation as a variational multiscale method[J].SIAM J Numer Anal,2006,43(6):2544-2566. [28] Falk R S，Richter G R. Local error estimates for a finite element for hyperbolic and covection-diffusion equations[J].SIAM J Numer Anal,1992,29(2):730-754. doi: 10.1137/0729046

### Catalog

###### 通讯作者: 陈斌, bchen63@163.com
• 1.

沈阳化工大学材料科学与工程学院 沈阳 110142

## Article Metrics

Article views (3092) PDF downloads(934) Cited by()

/