ZHANG Hong-qing, DING Qi. Analytic Solutions of a Class of Nonlinear Partial Differential Equations[J]. Applied Mathematics and Mechanics, 2008, 29(11): 1268-1278.
 Citation: ZHANG Hong-qing, DING Qi. Analytic Solutions of a Class of Nonlinear Partial Differential Equations[J]. Applied Mathematics and Mechanics, 2008, 29(11): 1268-1278.

# Analytic Solutions of a Class of Nonlinear Partial Differential Equations

• Rev Recd Date: 2008-09-25
• Publish Date: 2008-11-15
• Firstly, an approach is presented for computing the adjoint operator vector of a class of nonlinear (i. e. partial-nonlinear) operator matrix by generalizing the method presented by Zhang et al. and the conjugate operators. Secondly, a united theory is given for solving a class of nonlinear (i. e. partial-nonlinear and including all linear) and non-homogeneous differential equations by the mathe-matics-mechanization method. In other words, a transformation is constructed by homogenization and triangulation which can reduce the original system to the simpler one which is diagonal. Finally, some practical applications are given in elasticity equations.
•  [1] 张鸿庆. 弹性力学方程组一般解的统一理论[J].大连工学院学报,1978,18(3):25-47. [2] 张鸿庆,杨光.变系数偏微分方程组一般解的构造[J].应用数学和力学, 1991,12(2):135-139. [3] ZHANG Hong-qing,MEI Jian-qin.The computational differential algebraic geometrical method of constructing the fundamental solutions of system of PDEs[A].Proceeding of the 5th UK Conference on Boundary Integral Methods[C].Liverpool: Liverpool University Press, 2005,82-89. [4] 张鸿庆.数学机械化中的AC=BD模式[J].系统科学与数学,2008,28(8):1030-1039. [5] ZHANG Hong-qing,FAN En-gui.Application of mechanical methods to partial differential equations[A].In:Wang D M,Gao X S,Eds.Mathematics Mechanization and Applications[C].London: Academic Press, 2000,409-539. [6] 张鸿庆,冯红. 非齐次线性算子方程组一般解的代数构造[J].大连理工大学学报,1994,34(3):249-255. [7] 徐芝纶.弹性力学, 第四版[M].北京:高等教育出版社, 2006. [8] 胡育佳,朱媛媛, 程昌钧.在动载荷作用下框架结构大变形分析的微分代数方法[J].应用数学与力学,2008,29(4):398-408.

### Catalog

###### 通讯作者: 陈斌, bchen63@163.com
• 1.

沈阳化工大学材料科学与工程学院 沈阳 110142