XIANG Yu, HUANG Yu-ying, LU Jing, YUAN Li-yun, ZOU Shi-zhi. A New Matrix Method for Analyzing Vibration and Damping Effect of a Sandwich Circular Cylindrical Shell With a Viscoelastic Core[J]. Applied Mathematics and Mechanics, 2008, 29(12): 1443-1456.
Citation: XIANG Yu, HUANG Yu-ying, LU Jing, YUAN Li-yun, ZOU Shi-zhi. A New Matrix Method for Analyzing Vibration and Damping Effect of a Sandwich Circular Cylindrical Shell With a Viscoelastic Core[J]. Applied Mathematics and Mechanics, 2008, 29(12): 1443-1456.

A New Matrix Method for Analyzing Vibration and Damping Effect of a Sandwich Circular Cylindrical Shell With a Viscoelastic Core

  • Received Date: 2008-04-23
  • Rev Recd Date: 2008-10-08
  • Publish Date: 2008-12-15
  • Based on the linear theories of thin cylindrical shells and viscoelastic materials,the governing equation describing vibration of a sandwich circular cylindrical shell with a viscoelastic core under harmonic excitation,which can be written in a matrix differential equation of first order,was derived by considering the energy dissipation due to the shear deformation of the viscoelastic core layer and the interaction between all layers.After that a new matrix method for solving this governing equation was established by means of the extended homogeneous capacity precision integration approach presented by authors.With these,the vibration characteristics and damping effect of the sandwich cylindrical shell can be studied.Its difference from the existing transfer matrix method is that the state vector in governing equation is composed of the displacements and internal forces of the sandwich shell rather than of the displacements and their derivatives.So the present method can be applied to solve the dynamic problems of the kind of sandwich shell with various boundary conditions and partially constrained layer damping.Numerical examples show that the proposed approach is very effective and reliable.
  • loading
  • [1]
    Ray M C, Oh J, Baz A. Active constrained layer damping of thin cylindrical shell[J].Journal of Sound and Vibration,2001, 240(5): 921-935. doi: 10.1006/jsvi.2000.3287
    [2]
    Masti R S, Sainsbury M G. Vibration damping of cylindrical shells partially coated with a constrained viscoelastic treatment having a standoff layer[J].Thin-Walled Structures,2005, 43(9):1355-1379. doi: 10.1016/j.tws.2005.06.007
    [3]
    Zheng H, Tan X M, Cai C. Damping analysis of beams covered with multiple PCLD patches[J].International Journal of Mechanical Sciences, 2006, 48(12):1371-1383. doi: 10.1016/j.ijmecsci.2006.07.008
    [4]
    Krishna B V, Ganesan N. Studies on fluid-filled and submerged cylindrical shells with constrained viscoelastic layer[J].Journal of Sound and Vibration,2007, 303(3/5):575-595. doi: 10.1016/j.jsv.2007.01.009
    [5]
    高坚新, 沈亚鹏. 主被动阻尼层合板结构的自由振动和阻尼特性分析[J].应用数学和力学, 1999, 20(10):1004-1014.
    [6]
    Wang Horngjou, Chen Lienwen. Finite element dynamic analysis of orthotropic cylindrical shells with a constrained damping layer[J].Finite Elements in Analysis and Design,2004, 40(7):737-755. doi: 10.1016/S0168-874X(03)00112-4
    [7]
    Vasques C M A, Mace B R, Gardonio P,et al.Arbitrary active constrained layer damping treatments on beams: Finite element modelling and experimental validation[J].Computers and Structures,2006, 84(22/23):1384-1401. doi: 10.1016/j.compstruc.2006.01.035
    [8]
    Park C H, Baz A.Comparison between finite element formulations of active constrained layer damping using classical and layer-wise laminate theory[J].Finite Elements in Analysis and Design,2001, 37(1):35-56. doi: 10.1016/S0168-874X(00)00017-2
    [9]
    Ramesh T C, Ganesan N.Finite element analysis of conical shells with a constrained viscoelastic layer[J].Journal of Sound and Vibration,1994, 171(5):577-601. doi: 10.1006/jsvi.1994.1143
    [10]
    Ramesh T C, Ganesan N.Orthotropic cylindrical shells with viscoelastic core: a vibration and damping analysis[J].Journal of Sound and Vibration,1994, 175(4):535-555. doi: 10.1006/jsvi.1994.1344
    [11]
    Ramesh T C, Ganesan N.Finite element analysis of cylindrical shells with a constrained viscoelastic layer[J].Journal of Sound and Vibration,1994,172(3):359-370. doi: 10.1006/jsvi.1994.1180
    [12]
    章艺, 童宗鹏, 张志谊,等. 充液压电阻尼圆柱壳的有限元建模[J].振动工程学报,2006, 19(1):24-30.
    [13]
    申智春 郑钢铁. 附加约束阻尼层的复合材料梁单元建模分析[J].振动工程学报,2006, 19(4):481-487.
    [14]
    田晓耕, 沈亚鹏, 张元冲. 主动约束层阻尼结构的数值分析方法[J].计算力学学报,1998, 15(4):421-428.
    [15]
    王淼, 方之楚. 主动约束层阻尼梁结构复杂耦合振动的多层谱有限元法[J].上海交通大学学报, 2005,39(1):87-90.
    [16]
    XIANG Yu, HUANG Yu-ying. A semi-analytical and semi-numerical method for solving 2-D sound-structure interaction problems[J].Acta Mechanica Solida Sinica, 2003,16(2):116-126.
    [17]
    王淼, 方之楚. 主动约束层阻尼部分覆盖圆柱壳耦合振动控制[J].应用力学学报, 2005,22(4):545-549.
    [18]
    李恩奇, 雷勇军, 唐国金,等. 基于传递函数方法的约束层阻尼梁动力学分析[J].振动与冲击, 2007,26(2):75-78.
    [19]
    李恩奇, 李道奎, 唐国金,等. 基于传递函数方法的局部覆盖环状CLD圆柱壳动力学分析[J].航空学报, 2007, 28(6):1487-1493.
    [20]
    徐芝纶. 弹性力学(下册)[M]. 北京:人民教育出版社, 1982.
    [21]
    CHEN Lin-hung, HUANG Shyhchin. Vibrations of a cylindrical shell with partially constrained layer damping (CLD) treatment[J].International Journal of Mechanical Sciences,1999, 41(12):1485-1498. doi: 10.1016/S0020-7403(98)00102-7
    [22]
    Pan H H. Axisymmetrical vibrations of a circular sandwich shell with a viscoelastic core layer[J],J Sound and Vibration,1969,9(2): 338-348.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (2787) PDF downloads(723) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return