SHEN Jian-he, CHEN Shu-hui. Open-Plus-Closed-Loop Control for Chaotic Mathieu-Duffing Oscillator[J]. Applied Mathematics and Mechanics, 2009, 30(1): 21-29.
Citation: SHEN Jian-he, CHEN Shu-hui. Open-Plus-Closed-Loop Control for Chaotic Mathieu-Duffing Oscillator[J]. Applied Mathematics and Mechanics, 2009, 30(1): 21-29.

Open-Plus-Closed-Loop Control for Chaotic Mathieu-Duffing Oscillator

  • Received Date: 2008-07-19
  • Rev Recd Date: 2008-11-17
  • Publish Date: 2009-01-15
  • Utilizing the idea of the open-plus-closed-loop (OPCL) control, a controller which is composed of an external excitation and linear feedback was designed to entrain the chaotic trajectories of Mathieu-Duffing oscillator to its periodic and higher periodic orbits. The global basin of entrainment of the open-plus-closed-loop control was proved by combining Liapunov stability theory with a comparative theorem of initial value problems for second-order ordinary differential equations. Numerical simulations were performed to demonstrate the theoretical results.
  • loading
  • [1]
    Ott E, Grebogi C, Yorke J. Controlling chaos[J].Physical Review Letters,1990,64(11):1196-1199. doi: 10.1103/PhysRevLett.64.1196
    [2]
    Andrievskii B R, Fradkov A L.Control of chaos:methods and applications I:method[J].Aotumation and Remote Control,2003,64(5):673-713. doi: 10.1023/A:1023684619933
    [3]
    Fradkov A L, Evans R J.Control of chaos:methods and applications in engineering[J].Annual Reviews in Control,2005,29(1):33-56. doi: 10.1016/j.arcontrol.2005.01.001
    [4]
    Boccaletti S, Grebogi C, Lai Y C,et al.The control of chaos:theory and applications[J].Physics Reports,2000, 329(3):103-197. doi: 10.1016/S0370-1573(99)00096-4
    [5]
    Chen G R, Dong X N. From Chaos to Order:Perspectives, Methodologies and Applications[M].Singapore:World Scientific, 1998.
    [6]
    Jackson E A, Grosu I.An open-plus-closed-loop control of complex dynamics systems[J].Physica D,1995,85(1):1-9. doi: 10.1016/0167-2789(95)00171-Y
    [7]
    Jackson E A. The OPCL control for entrainment, model-resonance and migration actions on multi-attractor systems[J].Chaos, 1997,7(4):550-559. doi: 10.1063/1.166283
    [8]
    Wheeler D W, Schieve W C.Entrainment control in a noisy neural system[J].Physical Review E,2003,67(4):046219-1-046219-6. doi: 10.1103/PhysRevE.67.046219
    [9]
    Chen L Q. An open-plus-closed-loop control for discrete chaos and hyperchaos[J].Physics Letters A,2001,281(5/6):327-333. doi: 10.1016/S0375-9601(01)00055-X
    [10]
    Chen L Q, Liu Y Z.An open-plus-closed-loop approach to synchronization of chaotic and hyperchaotic maps[J].International Journal of Bifurcation and Chaos,2002,12(5):1219-1225. doi: 10.1142/S0218127402005066
    [11]
    Chen L Q, Liu Y Z.A modified open-plus-closed-loop approach to control chaos in nonlinear oscillations[J].Physics Letters A,1998,245(1/2):87-90. doi: 10.1016/S0375-9601(98)00342-9
    [12]
    Chen L Q, Liu Y Z.The parametric open-plus-closed-loop control of chaotic maps and its robustness[J].Chaos, Solitons & Fractals,2004,21(1):113-118.
    [13]
    Tian Y C, Tadé M O, Tang J Y.Nonlinear open-plus-closed-loop(NOPCL) control of dynamic systems[J].Chaos, Solitons & Fractals,2000,11(7):1029-1035.
    [14]
    Slotine J J E, Li W P.Applied Nonlinear Control[M].Beijing:China Machine Press, 2004.
    [15]
    Ravindra B, Zhu W D. Low-dimensional chaotic response of axially accelerating continuum in the supercritical regime[J].Archive of Applied Mechanics,1998,68(3/4):195-205. doi: 10.1007/s004190050157
    [16]
    Shen J H, Lin C K, Chen S H,et al.Bifurcations and route-to-chaos of Mathieu-Duffing oscillator by the incremental harmonic balance method[J].Nonlinear Dynamics,2008,52(4):404-413.
    [17]
    Chen G R, Dong X N. On feedback control of chaotic continuous-time systems[J].IEEE Transactions on Circuits and Systems—1:Fundamental Theory and Applications,1993,40(9):591-601. doi: 10.1109/81.244908
    [18]
    Li R H, Xu W, Li S.Chaos control and synchronization of the Φ6-Van der Pol system driven by external and parametric excitations[J].Nonlinear Dynamics,2008,53(3):261-271. doi: 10.1007/s11071-007-9313-3
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (2912) PDF downloads(618) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return