DING Hao-jiang, WANG Hui-ming, CHEN Wei-qiu. New Numerical Method for Volterra Integral Equationof the Second Kind in Piezoelastic Dynamic Problems[J]. Applied Mathematics and Mechanics, 2004, 25(1): 15-21.
Citation: DING Hao-jiang, WANG Hui-ming, CHEN Wei-qiu. New Numerical Method for Volterra Integral Equationof the Second Kind in Piezoelastic Dynamic Problems[J]. Applied Mathematics and Mechanics, 2004, 25(1): 15-21.

New Numerical Method for Volterra Integral Equationof the Second Kind in Piezoelastic Dynamic Problems

  • Received Date: 2002-11-01
  • Rev Recd Date: 2003-08-03
  • Publish Date: 2004-01-15
  • The elastodynamic problems of piezoelectric hollow cylinders and spheres under radial deformation can be transformed into a second kind Volterra integral equation about a function with respect to time,which greatly simplifies the solving procedure for such elastodynamic problems.Meanwhile,it becomes very important to find a way to solve the second kind Volterra integral equation effectively and quickly.By using an interpolation function to approadmate the unknown function,two new recursive formulae were derived,based on which numerical solution can be obtained step by step.The present method can provide accurate numerical results efficiently.It is also very stable for long time calculating.
  • loading
  • [1]
    Kress R.Linear Integral Equation[M]. Berlin: Springer-Verlag, 1989.
    [2]
    Delves L M, Mohamed J L.Computational Method for Integral Equations[M].Cambridge: Cambridge University Press, 1985.
    [3]
    Christopher T H, Baker M A. The Numerical Treatment of Integral Equation[M].Oxford: Oxford University Press, 1977.
    [4]
    Hamming R W.Numerical Methods for Scientists and Engineers(2nd Edition)[M]. New York: McGraw-Hill, 1973.
    [5]
    沈以淡. 积分方程[M].北京: 北京理工大学出版社, 1992.
    [6]
    阎玉斌, 崔明根. 第二类Volterra积分方程的准确解[J]. 高等学校计算数学学报, 1993,15(4): 291—296.
    [7]
    李鸿祥, 王国金, 王存政. 几类积分方程和常微分方程的精确解[J]. 上海铁道学院学报, 1995, 16(1):72—85.
    [8]
    Souchet R. An analysis of three-dimensional rigid body collisions with friction by means of a linear integral equation of Volterra[J].International Journal of Engineering Science, 1999, 37(3): 365—378. doi: 10.1016/S0020-7225(98)00065-2
    [9]
    Rose J L, Chou S C, Chou P C. Vibration analysis of thick-walled spheres and cylinders[J].Journal of the Acoustical Society of America, 1973,53(3): 771—776. doi: 10.1121/1.1913390
    [10]
    Pao Y H, Ceranoglu A N. Determination of transient responses of a thick-walled spherical shell by the ray theory[J].ASME Journal of Applied Mechanics, 1978, 45(1):114—122. doi: 10.1115/1.3424212
    [11]
    WANG Xi, Gong Yu-ming. A theoretical solution for axially symmetric problem in elastodynamics[J].Acta Mechanica Sinica,1991,7(3): 275—282. doi: 10.1007/BF02487596
    [12]
    丁皓江,王惠明,陈伟球.圆柱壳的轴对称平面应变弹性动力学解[J].应用数学和力学, 2002, 23(2): 138—145.
    [13]
    DING Hao-jing, WANG Hui-ming, HOU Peng-fei. The transient responses of piezoelectric hollow cylinders for axisymmetric plane strain problems[J].International Journal of Solids and Structures,2003,40(1):105—123. doi: 10.1016/S0020-7683(02)00525-5
    [14]
    DING Hao-jing, WANG Hui-ming, LING Dao-sheng. Analytical solution of a pyroelectric hollow cylinder for piezothermoelastic axisymmetric dynamic problems[J].Journal of Thermal Stresses,2003,26(3):261—276. doi: 10.1080/713855893
    [15]
    DING Hao-jing, WANG Hui-ming, CHEN Wei-qiu. Transient responses in a piezoelectric spherically isotropic hollow sphere for symmetric problems[J].ASME Journal of Applied Mechanics2003,70(3):436—445.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (2996) PDF downloads(600) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return