XUE Zhi-qun, TIAN Hong. Remark on Stability of Ishikawa Iterative Procedures[J]. Applied Mathematics and Mechanics, 2002, 23(12): 1314-1318.
Citation: XUE Zhi-qun, TIAN Hong. Remark on Stability of Ishikawa Iterative Procedures[J]. Applied Mathematics and Mechanics, 2002, 23(12): 1314-1318.

Remark on Stability of Ishikawa Iterative Procedures

  • Received Date: 1999-10-18
  • Rev Recd Date: 2002-06-07
  • Publish Date: 2002-12-15
  • The stability of the Ishikawa iteration procedures was studied for one class of continuity strong pseudocontraction and continuity strongly accretive operators with bounded range in real uniformly smooth Banach space. Under parameters satisfying certain conditions, the convergence of iterative sequences was proved. The results improve and extend the recent corresponding results, and supply the basis of theory for further discussing convergence of iteration procedures with errors.
  • loading
  • [1]
    ZHOU Hai-yun.Stable iteration procedures for strong pseudocontractions and nonlinear equations involving accretive operators without Lipschitz assumption[J].J Math Anal Appl,1999,230(4):1-10.
    [2]
    Reich S.An iteration procedure for constructing zeros of accretive sets in Banach spaces[J].Nonlinear Anal,1978,2(1):18-21.
    [3]
    Deimling K.Zeros of accretive operators[J].Manu Scripta Math,1974,13(3):365-374.
    [4]
    Deimling K.Nonlinear Functional Analysis[M].New York/Berlin:Springer-Verlag 1985,143-145.
    [5]
    Osilike M O.Stability results for the Ishikawa fixed point procedures[J].Indian J Pure Appl Math,1995,26(5):937-945.
    [6]
    Osilike M O.Stable iteration procedures for strong pseudocontractions and nonlinear equations of the accretive type[J].J Math Anal Appl,1996,204(5):677-682.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (2263) PDF downloads(696) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return