CHENG Jin-quan, WANG Biao, DU Shan-yi. A Micromechanics Method to Study the Effect of Domain Switching on Fracture Behavior of Polycrystalline Ferroelectric Ceramics[J]. Applied Mathematics and Mechanics, 2002, 23(11): 1113-1123.
 Citation: CHENG Jin-quan, WANG Biao, DU Shan-yi. A Micromechanics Method to Study the Effect of Domain Switching on Fracture Behavior of Polycrystalline Ferroelectric Ceramics[J]. Applied Mathematics and Mechanics, 2002, 23(11): 1113-1123.

A Micromechanics Method to Study the Effect of Domain Switching on Fracture Behavior of Polycrystalline Ferroelectric Ceramics

• Rev Recd Date: 2002-07-15
• Publish Date: 2002-11-15
• The effect of domain switching on anisotropic fracture behavior of polycrystalline ferroelectric ceramics was revealed on the basis of the micromechanics method.Firstly,the electroelastic field inside and outside an inclusion in an infinite ferroelectric ceramics is carried out by the way of Eshelby-Mori-Tanaka.s theory and a statistical model,which accounts for the influence of domain switching. Further,the crack extension force(energy-release rate)Gext for a penny-shape crack inside an effective polycrystalline ferroelectric ceramics is derived to estimate the averaged effect of domain switching on the fracture behavior of polycrystalline ferroelectric ceramics.The simulations of the crack extension force for a crack in a BaTiO3 ceramics are shown that the effect of domain switching must be taken into consideration while analyzing the fracture behavior of polycrystalline ferroelectric ceramics.These results also demonstrate that the influence of the applied electric field on the crack propagation is more profound at smaller mechanical loading and the applied electric field may enhance the crack extension in a sense,which are consistent with the experimental results.
•  [1] Jaff B, Cook W R, Jaff H. Piezoelectric Ceramic[M]. New York: Academic press, 1971. [2] Chueng H T,Kim H G. Characteristics of domain in tetragonal phase PZT ceramics[J]. Ferroelectrics, 1987, 76:327-333. [3] Zenon B. Optical microscopic mapping of the domain structure of BaTiO3 Microcrystals[J]. Ferroelectrics, 1994, 157:13-18. [4] CAO Heng-chu, Evans A G. Nonlinear deformation of ferroelectric ceramics[J]. J Am Ceram Soc, 1993, 76(4): 890-896. [5] Ansgar B, Schaufele, et al. Ferroelastic properties of lead zirconate titanate ceramics[J]. J Am Ceram Soc, 1996, 79(10): 2637-2640. [6] Zhang Q M. Change of the weak-field properties of Pb(ZrTi)O3 piezoceramics with compressive uniaxial stress and its links to the effect of dopants on the stability of the polarizations in the materials[J]. J Mater Res, 1997, 12(1): 226-234. [7] Hwang S C, Lynch C S, McMeeking R M. Ferroelectric/ferroelastic interactions and a polarization switching model[J]. Acta Metall Mater, 1995, 43(5): 2073-2084. [8] Hwang S C. The simulation of switching in polycrystalline ferroelectric ceramics[J]. J Appl Phys, 1998, 84(3): 1530-1540. [9] Cheng J, Wang B, Du S. Effective electroelastic properties of polycrystalline ferroelectric ceramic predicted by a statistical model[J]. Acta Mechanica, 1999, 138(3-4): 163-175. [10] Li J, Weng G J. A theory of domain switch for the nonlinear behavior of ferroelectrics[J]. Proc R Soc Lond, A, 1999, 45: 3493-3511. [11] Pohanka R C. Effect of the phase transformation on the fracture behavior of BaTiO3[J]. J Am Ceram Soc, 1978, 61(1-2): 72-75. [12] Pisarenko G G. Anisotropy of fracture toughness of piezoelectric ceramic[J]. J Am Ceram Soc, 1985, 68(5): 259-265. [13] Lynch C S. Crack growth in ferroelectric ceramics driven by cyclic polarization switching[J]. J Intl Mater Sys, 1995, 6:191-198. [14] Cook, R F. Fracture of ferroelectric ceramics[J]. Ferroelectrics, 1983, 50: 267-272. [15] Pak Y E. Linear electro-elastic fracture mechanics of piezoelectric materials[J]. International J Fracture, 1992, 54:79-100. [16] ZHANG Tong-yi, TONG Pin. Fracture mechanics for a mode Ⅲ crack in a piezoelectric material[J]. Int J Solids Structures, 1996, 33(3): 343-359. [17] Suo Z. Tracture mechanics for piezoelectric ceramics[J]. J Mech Phys Solids, 1992, 40(4): 739-765. [18] Kumar S. Energy release rate and crack propagation in piezoelectric materials: Part Ⅰ: Mechanical/elcetrical load[J]. Acta Mater, 1997, 45(2): 849-857. [19] CHAO Lu-ping, HUANG Jin-hui. Fracture criteria for piezoelectric materials containing multiple crack[J]. J Appl Phys, 1999, 85(9): 6695-6703. [20] WANG Biao. Three-dimensional analysis of a flat elliptical crack in a piezoelectric material[J]. Int J Engng Sci, 1992, 30(6):781-791. [21] Yang W, Zhu T. Switching-toughening of ferroelectrics subjected to electric fields[J]. J Mech Phys Solids, 1998, 46(2): 291-311. [22] Barnett D M, Lothe J. Dislocations and line charges in anisotropic piezoelectric insulators[J]. Phys Status Solidi, B, 1975, 67: 105-117. [23] Mura T. Micromechanics of Defects in Solids[M]. Boston: Martinus Nijhoff, 1982. [24] Mori T,Tanaka K. Average stress in the matrix and average energy of materials with misfitting inclusion[J]. Acta Metall, 1973, 21: 571-574. [25] Merz Walter J. Switching time in ferroelectric BaTiO3 and its dependence on crystal thickness[J]. J Appl Phys, 1956,27(8): 938-943. [26] WANG Biao. Three-dimensional analysis of an ellipsoidal inclusion in a piezoelectric material[J]. Int J Solids Structures, 1992, 29(3): 293-308.

Catalog

通讯作者: 陈斌, bchen63@163.com
• 1.

沈阳化工大学材料科学与工程学院 沈阳 110142