ZHANG Jie-fang, LIU Yu-lu. Localized Coherent Structures of the(2+1)-Dimensional Higher Order Broer-Kaup Equations[J]. Applied Mathematics and Mechanics, 2002, 23(5): 489-496.
Citation: ZHANG Jie-fang, LIU Yu-lu. Localized Coherent Structures of the(2+1)-Dimensional Higher Order Broer-Kaup Equations[J]. Applied Mathematics and Mechanics, 2002, 23(5): 489-496.

Localized Coherent Structures of the(2+1)-Dimensional Higher Order Broer-Kaup Equations

  • Received Date: 2001-07-03
  • Rev Recd Date: 2001-11-28
  • Publish Date: 2002-05-15
  • By using the extended homogeneous balance method,the localized cohernet structures are studied.A nonlinear transformation was first established,and then the linearization form was obtained based on the extended homogeneous balance method for the higher order(2+1)-dimensional Broer-Kaup equations.Starting from this linearization form equation,a variable separation solution with the entrance of some arbitrary functions and some arbitrary parameters was constructed.The quite rich localized coherent structures were revealed.This method,which can be generalized to other(2+1)-dimensional nonlinear evolution equation,is simple and powerful.
  • loading
  • [1]
    Boiti M,Leon J J P,Martina L,et al.Scattering of localized solitons in the plane[J].Phys Lett A,1988,132(8-9):432-439.
    [2]
    Fokas A S,Santini P M.On the simplest integrable equation in 2+1[J].Phyisica D,1990,44(1):99-104;Hietarinta J,Hirota R.Multidromion solutions to the Davey-Stewartson equation[J].Phys Lett A,1990,145(5):237-244.
    [3]
    Hietarinta J.One-dromion solutions for generic classes of equations[J].Phys Lett A,1990,149(2-3):113-117.
    [4]
    Radha R,Lakshmanan M.Singularity analysis and localized cohernet structures in(2+1)-dimensional generalized Korteweg-de Vries equations[J].J Math Phys,1994,35(9):4746-4756.
    [5]
    Radha R,Lakshmanan M.Dromion like structures in the(2+1)-dimensional breaking soliton equation[J].Phys Lett A,1995,197(1):7-12.
    [6]
    Radha R,Lakshmanan M.Exotic coherent structures in the(2+1)-dimensional long dispersive wave equation[J].J Math Phys,1997,38(2):292-299.
    [7]
    Radha R,Lakshmanan M.A new class of induced localized structures in the(2+1)-dimensional scalar nonlinear Schrdinger equations[J].J Phys A,1997,30:3229-3232.
    [8]
    Lou S Y,Dromion-like structures in a(3+1)-dimensional KdV-type equation[J].J Phys A,1996,29:5989-6001.
    [9]
    Ruan H Y,Lou S Y.Higher-dimensional dromion structures:Jimbo-Miwa-Kadomtsev-Petviashvili system[J].J Math Phys,1997,38(6):3123-3136.
    [10]
    Lou S Y.Generalized dromion solutions of the(2+1)-dimensional KdV equation[J].J Phys A,1995,28:7227-2732.
    [11]
    Lou S Y.On the dromion solutions of the potential breaking soliton equation[J].Commun Theor,1996,26(4):487-492.
    [12]
    Radha R,Lakshmanan M.Generalized dromions in the(2+1)-dimensional long dispersive wave(2LDW) and scalar nonlinear Schrdinger(NLS) equations[J].Chaos Solitons & Fractals,1999,10:1821-1824.
    [13]
    ZHANG Jie-fang.Generalized dromions of the(2+1)-dimensional nonlinear Schrdinger equations[J].Communcation in Nonlinear Science & Numerical Simulation,2001,6(1):50-53.
    [14]
    ZHANG Jie-fang.A simple soliton solution method for the(2+1)-dimensional long dispersive wave equations[J].Acta Physica Sinica(Overseas Edition),1999,8(2):326-330.
    [15]
    Lou S Y.On the coherent structures of the Nizhnik-Novikov-Veselov equation[J].Phys Lett A,2000,277:94-100.
    [16]
    Lou S Y,Ruan H Y.Revisitation of the localized excitations of the(2+1)-dimensional KdV equation[J].J Phys A:Math Gen,2001,34:305-316.
    [17]
    RUAN Hang-yu,CHEN Yi-xin.Ring solitions,dromions,breathers and instantons of the NLS equation[J].Acta Physica Sinica,2001,50(4):586-591.
    [18]
    WANG Ming-liang.The solitary wave solutions for variant Boussinesq equations[J].Phys Lett A,1995,199:169-172.
    [19]
    ZHANG Jie-fang.Multiple solitions of long liquid wave equations[J].Acta Physica Sinica,1999,47(9):1416-1420;Multi-soliton solutions of the dispersive long wave equation[J].Chin Phys Lett,1999,16(1):659-661.
    [20]
    ZHANG Jie-fang.Bcklund transformation and multisoliton-like solution of the(2+1)-dimensional dispersive long wave equations[J].Commun Theor Phys,2000,33(4):577-582.
    [21]
    FANG Een-gui,ZHANG Hong-qing.Solitary wave solution of nonlinear wave equqtion[J].Acta Physica Sinica,1997,46(1):1254-1259.
    [22]
    LOU Sen-yue,WU Xing-biao.Broer-Kaup systems from Darboux transformation related symmetry constraints of KP equation[J].Commun Theor Phys,1998,29(1):145-148.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (2157) PDF downloads(669) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return