LI Hong-da, YE Zheng-lin, GAO Hang-shan. On the Continuity and Differentiability of a Kind of Fractal Interpolation Function[J]. Applied Mathematics and Mechanics, 2002, 23(4): 422-428.
 Citation: LI Hong-da, YE Zheng-lin, GAO Hang-shan. On the Continuity and Differentiability of a Kind of Fractal Interpolation Function[J]. Applied Mathematics and Mechanics, 2002, 23(4): 422-428.

# On the Continuity and Differentiability of a Kind of Fractal Interpolation Function

• Rev Recd Date: 2001-12-21
• Publish Date: 2002-04-15
• The sufficient conditions of Helder continuity of two kinds of fractal interpolation functions defined by IFS were obtained. The sufficient and necessary condition for its differentiability was proved. Its derivative was a fractal interpolation function generated by the associated IFS, if it is differentiable.
•  [1] Barnsley M F.Fractal functions and interpolation[J].Constr Approx,1986,2(3):303-329. [2] Barnsley M F.Fractal Everywhere[M].Boston:Academic Press,1988. [3] Massopust Peter R.Fractal function and applications[J].Chaos Solitons & Fractal,1997,8(2):171-190. [4] Peter Singer.Self-afine functions and wavelet series[J].J Math Appl,1999,240(2):518-551. [5] Jacques Levy-Vehel.Fractal approaches in signal processing[J].Fractals,1995,3(4):715-775. [6] Panagiotopoulos P D,Panagouli D.Mechanics on fractal bodies:Data compression using fractal[J].Chaos Solitons & Fractal,1997,8(2):253-267. [7] 谢和平,孙洪泉.分形插值曲面理论及应用[J].应用数学和力学,1998,19(4):297-306. [8] Bedford T.Helder expontents and box dimension for self-affine fractal function[J].Constr Approx,1989,5(1):33-48. [9] Donovan G,Geronimo J S,Massopust P R.Construction of orthogonal wavelets using fractal interpolation functions[J].SIAM J Math Anal,1996,27(4):1158-1192. [10] Barnsley M F,Harring A N.The calculus of interpolation function[J].J Approx Theory,1989,57(1):14-34.

### Catalog

###### 通讯作者: 陈斌, bchen63@163.com
• 1.

沈阳化工大学材料科学与工程学院 沈阳 110142