ZHANG Gui, XIANG Jie, LI Dong-hui. Nonlinear Saturation of Baroclinic Instability in the Generalized Phillips Model (Ⅰ)—the Upper Bound on the Evolution of Disturbance to the Nonlinearly Unstable Basic Flow[J]. Applied Mathematics and Mechanics, 2002, 23(1): 73-81.
Citation: ZHANG Gui, XIANG Jie, LI Dong-hui. Nonlinear Saturation of Baroclinic Instability in the Generalized Phillips Model (Ⅰ)—the Upper Bound on the Evolution of Disturbance to the Nonlinearly Unstable Basic Flow[J]. Applied Mathematics and Mechanics, 2002, 23(1): 73-81.

Nonlinear Saturation of Baroclinic Instability in the Generalized Phillips Model (Ⅰ)—the Upper Bound on the Evolution of Disturbance to the Nonlinearly Unstable Basic Flow

  • Received Date: 2000-01-16
  • Rev Recd Date: 2001-10-29
  • Publish Date: 2002-01-15
  • On the basis of the nonlinear stability theorem in the context of Arnol's second theorem for the generalized Phillips model,nonlinear saturation of baroclinic instability in the generalized Phillips model is investigated.By choosing appropriate artificial stable basic flows,the upper bounds on the disturbance energy and potential enstrophy to the nonlinearly unstable basic flow in the generalized Phillips model are obtained,which are analytic completely and without the limitation of infinitesimal initial disturbance.
  • loading
  • [1]
    Shepherd T G.Nonlinear saturation of baroclinic instability.Part-one: the two-layer model[J].Journal of the Atmospheric Sciences, 1988,Vo1.45(14):2014-2025.
    [2]
    Shepherd T G.Nonlinear saturation of baroclinic insability.part-two: Continuousiy-statified fluid [J].Journalof the Atmospheric Sciences,1989,46(7):888-907.
    [3]
    Shepherd T G.Nonlinear saturation of baroclinic instability.Part-Three: bounds on tie energy[J].Jorrnal of the Atemospheric Sciences, 1993,Vol.50(16):2697-2709.
    [4]
    ZENG Qing-cun.Variational principle of instability of atrnosphic motions[J].Adv Atmos Sci,1989,6(2): 137-172.
    [5]
    MU Mu.Nonlinear stability theorem of two-dimensional quasi-geostrophic motions geophys astroph[J].Fluid Dynamics, 1992,65:57-76.
    [6]
    Paret J, Vanneste J.Nonlinear saturation of haroclinic instability in a three-layer model[J].J Atmos Sci, 1996,53(20), 2905-2917.
    [7]
    Cho H R, Shepherd T G, Vladimirov V A.Application of the direct Liapunov method to the problem of symmetric stability in the atmosphere[J].J Atmos Sci, 1993,50(6): 822-334.
    [8]
    MU Mu, Shepherd T G, Swanson K.On nonlinear symmetric stablity and the nonlinear saturation of symmetric instability[J].J Atmos Sci, 1996,53(20):2918-2923.
    [9]
    MU Mu, ZENG Qing-cun, Shepherd T G, et al.Nonlinear stability of multilayer quasi-geostrophic flow[J].J Fluid Mech, 1994,264:165-184.
    [10]
    张瑰.广义Phillips模式的非线性稳定性判据[J].空军气象学院学报,,1999,20(2):133-143.Nonlinear Saturation of Baroclinic Instability in the Generalized Phillips Model (Ⅰ)-the Upper Bound on the Evolution of Disturbance to the Nonlinearly Unstable Basic Flow[J].IEEE AC,1999,44(2):334-336.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (2051) PDF downloads(579) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return