MA Jun-hai, CHEN Yu-shu. An Analytic and Application to State Space Reconstruction About Chaotic Time Series[J]. Applied Mathematics and Mechanics, 2000, 21(11): 1117-1124.
Citation: MA Jun-hai, CHEN Yu-shu. An Analytic and Application to State Space Reconstruction About Chaotic Time Series[J]. Applied Mathematics and Mechanics, 2000, 21(11): 1117-1124.

An Analytic and Application to State Space Reconstruction About Chaotic Time Series

  • Received Date: 1999-07-12
  • Rev Recd Date: 2000-06-25
  • Publish Date: 2000-11-15
  • The state space reconstruction is the major important quantitative index for describing nonlinear chaotic time series.Based on the work of many scholars,such as:N.H.Packard,F.Takens M.Casdagli J.F.Bibson,CHEN Yu-shu et al,the state space was reconstructed using the method of Legendre coordinate.Several different scaling regimes for lag time τ were identified.The influence for state space reconstruction of lag time τ was discussed.The result tells us that is a good practical method for state space reconstruction.
  • loading
  • [1]
    Packard N H,Crutchifield J P,Farmer J D,et al.Geometry from a time series[J].Phys Rev Lett,1980,45(6):712-716.
    [2]
    Takens F,Mane.Detecting strange attractors in fluid turbulence[A].In:Rand D A,Young L S,Eds.Dynamical Systems and Turbulence[C].Vol.898 of Lecture Notes in Mathematics,Berlin:Springer,1986,366.
    [3]
    Berndt Pilgram,Kaplan Daniel T.A comparison of estimators for 1/f noise[J].Phys D,1998,114(3):108-122.
    [4]
    Casdagli M,Eubank S,Farmer J D,et al.State space reconstruction in the presence of noise[J].Phys D,1991,51(1):52-98.
    [5]
    YING Cheng-lai,David Lerner.Effective scaling regime for computing the correlation dimension from chaotic time series[J].Phys D,1998,115(5):1-18.
    [6]
    Badii R,Broggi G,Derighetti B,et al.Dimension increase in filtered chaotic signals[J].Phys Rev Lett,1988,60(4):979-984.
    [7]
    Mitschke F.A causal filters for chaotic signals[J].Phys Rev A,1990,41:1169-1171.
    [8]
    Scargle J D.Studies in astronomical time series analysis,Modeling chaotic and random processes with linear filters[J].Astrophys J,1990,359(12):469-482.
    [9]
    Broomherd D S.Extracting qualitatire dynamics from experimental data[J].Phys D,1987,20(11):217-236.
    [10]
    Gibson J F,Casdagli M,Eubank S,et al.An analystic approach to proctical state space reconstruction[J].Phys D,1992,57(7):1-30.
    [11]
    Liebert W,Pawalzik K,Schuster H G.Optimal embeddings of chaotic attractors from topological considerations[J].Europ Phy sics Lett,1991,14(8):521-526.
    [12]
    CHEN Yu-shu,MA Jun-hai,LIU Zeng-rong.The state space reconstruction technology of different kinds of chaotic data obtained from dynamical system[J].Acta M echan ica Sin ica,1999,15(1):82-92.
    [13]
    马军海.混沌时序动力系统非线性重构[D].天津:天津大学力学系,1997.
    [14]
    YING Cheng-lai,David Lerner.Effective scaling regime for computing the correlation dimension from chaotic time series[J].Phys D,1998,115(5):1-18.
    [15]
    Theiler J.Statistical precision of dimension estimators[J].Phys Rev A,1990,41(6):3038-3051.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (2405) PDF downloads(1490) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return