Wu Zhigang, Wang Benli, Ma Xingrui. Theory and Algorithm of Optimal Control Solution to Dynamic Systme Parameters Identification (Ⅱ) Stochastic System Parameters Identification and Application Example[J]. Applied Mathematics and Mechanics, 1999, 20(3): 229-234.
 Citation: Wu Zhigang, Wang Benli, Ma Xingrui. Theory and Algorithm of Optimal Control Solution to Dynamic Systme Parameters Identification (Ⅱ) Stochastic System Parameters Identification and Application Example[J]. Applied Mathematics and Mechanics, 1999, 20(3): 229-234.

# Theory and Algorithm of Optimal Control Solution to Dynamic Systme Parameters Identification (Ⅱ) Stochastic System Parameters Identification and Application Example

• Rev Recd Date: 1998-08-15
• Publish Date: 1999-03-15
• Based on the contents of part(Ⅰ) and stochastic optimal control theory, the concept of optimal control solution to parameters identification of stochastic dynamic system is discussed at first. For the completeness of the theory developed in this paper and part (Ⅰ), then the procedure of es tablishing Hamilton-Jacobi-Bellman (HJB) equations of parameters identification problem is present ed. And then, parameters identification algorithm of stochastic dynamic system is introduced. At last, an application example-local nonlinear parameters identification of dynamic systemis presented.
•  [1] 蔡金狮.动力学系统辨识与建模[M].北京:国防工业出版社,1991 [2] 黄光远,刘小军.数学物理反问题[M].济南:山东科技出版社,1993 [3] 王康宁.最优控制的数学理论[M].北京:国防工业出版社,1995 [4] 雍炯敏.动态规划与Hamilton-Jacobi-Bellman方程[M].上海:上海科技出版社,1992 [5] Stengel R F.Stochastic Optimal Control[M].New York:John Wiley & Sons,Inc,1986 [6] Bryson A E,Ho Yuchi.Applied Optimal Control[M].New York:Hemisphere Publishing Corporation,1975

### Catalog

###### 通讯作者: 陈斌, bchen63@163.com
• 1.

沈阳化工大学材料科学与工程学院 沈阳 110142