Huang Wenhua, Cao Jusheng, Shen Zuhe. On the Solution of Nonlinear Two-Point Boundary Value Problem u'+g(t, u)=f(t), u(0)=u(2π)=0[J]. Applied Mathematics and Mechanics, 1998, 19(9): 821-826.
Citation: Huang Wenhua, Cao Jusheng, Shen Zuhe. On the Solution of Nonlinear Two-Point Boundary Value Problem u"+g(t, u)=f(t), u(0)=u(2π)=0[J]. Applied Mathematics and Mechanics, 1998, 19(9): 821-826.

On the Solution of Nonlinear Two-Point Boundary Value Problem u"+g(t, u)=f(t), u(0)=u(2π)=0

  • Received Date: 1997-05-26
  • Rev Recd Date: 1998-05-10
  • Publish Date: 1998-09-15
  • In this paper,a non-variational version of a max-min principle is proposed,and an existence and uniqueness result is obtained for the nonlinear two-point boundary value problem u"+g(t,u)=f(t),u(0)=u(2π)=0.
  • loading
  • [1]
    R.F.Manasevich,A non variational version of a max-min principle,Nonlinear Analysis,Theory,Methods &Applications,7(6) (1983),565-570.
    [2]
    Gaetano Zampieri,Diffeomorphisms with Banach space domains,Nonlinear Analysis,Theory,Methods &Applications,19(10) (1992),923-932.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (2303) PDF downloads(769) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return