Liu Guodong. Higher-Order Multivariable Euler’s Polynomial and Higher-Order Multivariable Bernoulli’s Polynomial[J]. Applied Mathematics and Mechanics, 1998, 19(9): 827-836.
 Citation: Liu Guodong. Higher-Order Multivariable Euler’s Polynomial and Higher-Order Multivariable Bernoulli’s Polynomial[J]. Applied Mathematics and Mechanics, 1998, 19(9): 827-836.

# Higher-Order Multivariable Euler’s Polynomial and Higher-Order Multivariable Bernoulli’s Polynomial

• Rev Recd Date: 1997-04-10
• Publish Date: 1998-09-15
• In this paper,the definitions of both higher-order multivariable Euler's numbers and polynomial,higher-order multivariable Bernoulli's numbers and polynomial are given and some of their important properties are expounded.As a resut,the mathematical relationship between higher-order multivariable Euler's polynomial (numbers) and higher-order multivariable Bernoulli's polynomial (numbers) are thus obtained.
•  [1] 王竹溪、郭敦仁,《特殊函数概论》,科学出版社,北京 (1965),1-8,47-49. [2] A.爱尔台里,《高级超越函数》(张致中译),科学技术出版社,北京 (1957),45-46. [3] N.E.Noulund,Vorlesungen Über Difference Zenchnun g,Berlin (1923),29-37,110-156. [4] Tom M.Aposto,Introduction to Analytic Number,Springer-Verlag,Newyork,Iteidelberg,Berlin (1976). [5] W.H.拜尔,《标准数学手册》(荣现志、张顺忠译),化学工业出版社,北京 (1988),420-426. [6] 日本数学会编,《数学百科辞典》(石胜文译),科学出版社,北京 (1984),1034-1035.

### Catalog

###### 通讯作者: 陈斌, bchen63@163.com
• 1.

沈阳化工大学材料科学与工程学院 沈阳 110142