Chen Liqun, Lin Yanzhu. Control of the Lorenz Chaos by the Exact Linearization[J]. Applied Mathematics and Mechanics, 1998, 19(1): 62-69.
Citation: Chen Liqun, Lin Yanzhu. Control of the Lorenz Chaos by the Exact Linearization[J]. Applied Mathematics and Mechanics, 1998, 19(1): 62-69.

Control of the Lorenz Chaos by the Exact Linearization

  • Received Date: 1996-05-13
  • Rev Recd Date: 1997-05-21
  • Publish Date: 1998-01-15
  • Controlling chaos in the Lorenz system with a controllable Rayleigh number is investigated by the sate space exact linearization method. Based on proving the exact linearizability, the nonlinear feedback is utilized to design the transformation changing the original chaotic system into a linear controllable one so that the control is realized. A numerical example of control is prsented.
  • loading
  • [1]
    T.Shinbrot,C.Grebogi,E.Ott and J.A.Yorke,Using small perturbation to control chaos,Nature,363(1993),411-474.
    G.Chen and X.Dong,From chaos to order:perspectives and methodologies in controlling chaotic non-linear dynamical systems,Int.J.Bifur.Chaos,3(1993),1363-1490.
    M.J.Ogorzalek,Taming chaos:control,IEEE Tran.Circ.Syst.I.,40(1993),700-706.
    B.Blazejcyzk,T.Kapitaniak,J.Wojewoda and J.Brindly,Controlling chaos in mechanical systems,Appl.Mech.Rev.,46(1993),385-395.
    E.N.Lorenz,Deterministic non-periodic flow,J.Atmos.Sci.,20(1963),130-141.
    A.Isidori,Non linear Control Systems,Springer-Verlag(1989),156-172.
    C.Sparrow,The Lorenz Equation Bifurcations,Chaos,and Strange Attractors,Springer-Verlag(1982).
    J.L.Breeden and A.Hubler,Reconstructing equations of motion from eqperimental data with unob-served variables,Phys.Rev.A,42(1990),5817-5826.
    E.A.Jackson,Control of dynamic flows with attractors,Phys.Rev.A,44(1991),4839-4853.
    D.Gligorlski,D.Dimovski and V.Urumov,Control in multidimensional chaotic systems by small perturbations,P hys.Rev.E,51(1995),1690-1694.
    R.Mettin,A.Hubler and A.Scheeline,parametric entrainment control of chaotic systems,Phys.Rev.E,51(1995),4065-4075.
    E.A.Jackson and I.Grosu,An open-plus-closed-loop(OPLC) control of complex dynamic systems,Phys.D,85(1995),1-9.
    Chen Liqun and Liu Yanzhu,Parametric open-plus-closed-loop control of chaos in continuous dynamical systems,Act a,Mechanics Solida Sinica,10(4)(1997).
    T.L.Vincent,J.Yu,Control of a chaotic system,Dyn.Contr.,1(1991),35-52.
    Z.Qu,G.Hu and B.Ma,Controlling chaos via continuous feedack,Phys.Lett.A,178(1993),265-270.
    J.Alvarez-Gallegos,Nonlinear regulation of a Lorenz system by feedback linearization techniques,Dyn.Contr.,4(1994),277-289.
    C.J.Wan and D.Bernstein,Nonlinear feedback control with global stabilization,Dyn.Contr.,5(1995),321-346.
    20 T.W.Carr and I.B.Schwartz,Controlling unstable steady states using system parameter variation and control duration,Phys.Rev.E,50(1994),3410-3415.
    M.Stampfle,controlling chaos through iteration sequences and interpolation techniques,Int.J.Bifur.Chaos,4(1994),1697-1701.
    T.T.Martley and F.Mossayebi,A classical approach to controlling the Lorenz equations,Int.J.Bifur.Chaos,2(1992),881-887.
    T.B.Fowler,Application of stochastic control techniques to chaotic nonlinear systems,IEEE Tran.Auto.Contr.,34(1989),201-205.
    T.H.Yeap and N.U.Ahmed,Feedback control of chaotic systems,Dyn.Contr.,4(1994),97-110.
    K.Ogata,Modern Control Engineering,Prentice-Hall,(1990),776-795.
  • 加载中


    通讯作者: 陈斌,
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1601) PDF downloads(605) Cited by()
    Proportional views


    DownLoad:  Full-Size Img  PowerPoint