Zhou Kun. On the Problem of the Number of Bifurcation Solutions at Singular Point[J]. Applied Mathematics and Mechanics, 1997, 18(10): 905-909.
Citation: Zhou Kun. On the Problem of the Number of Bifurcation Solutions at Singular Point[J]. Applied Mathematics and Mechanics, 1997, 18(10): 905-909.

On the Problem of the Number of Bifurcation Solutions at Singular Point

  • Received Date: 1995-07-19
  • Rev Recd Date: 1997-01-01
  • Publish Date: 1997-10-15
  • In this paper,it is proved that the solutions of a nonlinear equation are isolated under Ihe condition that the singular points are isolated.It shows that there musl have and Only have finite solutions branching from bifurcation point.This is important.for the numerical analysis of bifurcation problems.
  • loading
  • [1]
    季海波、武际可、胡海昌,分叉问题的几何描述及其计算方法,中国科学(A),(9)(1991),947.
    [2]
    E.Allgower and K.Georg-Numerical Continuation Methods,Springer-Verlag(1990).
    [3]
    S.N.Chow and J.K.Hale,Methods of Bifurcation Theory,Springer-Verlag(1982).
    [4]
    武际可、苏先椒,《弹性系统的稳定性》,科学出版社(1994).
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (2157) PDF downloads(460) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return