Wu Shengchang, Liu Xiaoqing. Spectral Method in Time for KdV Equations[J]. Applied Mathematics and Mechanics, 1996, 17(4): 357-362.
Citation: Wu Shengchang, Liu Xiaoqing. Spectral Method in Time for KdV Equations[J]. Applied Mathematics and Mechanics, 1996, 17(4): 357-362.

Spectral Method in Time for KdV Equations

  • Received Date: 1995-02-22
  • Publish Date: 1996-04-15
  • This paper presents a fully spectral discretization method for solving KdV equations with periodic boundary conditions.Chebyshev pseudospectral approximation in the time direction and Fourier Galerkin approximation in the spatial direction.The expansion coefficients are determined by minimizing an object funictional.Rapid convergence of the method is proved.
  • loading
  • [1]
    蒋伯诚等,《计算物理中的谱方法》,湖南科技出版社(1989).
    [2]
    G.Ierley,etc.,Spectral methods in time for a class of parabolic partial differential equations,J.Comp.Phys.,102(1992),88-97.
    [3]
    R.K.Dodd.Solitons and Nonlinear Wave Equations,Academic Press,London(1982).
    [4]
    王德人,《非线性方程组解法与最优化方沈》,人民教育出版社(1979).
    [5]
    R.G.Voigt,etc.,Spectral Method for PDE,SIAM Philadelpia(1984).
    [6]
    C.Canuto,etc.,Analysis of.the combinated finite element and Fourier interpolation,Numer.Math..39(1982).205-220.
    [7]
    李大潜等,《非线性发展方程》,科学出版社(1989),
    [8]
    P.Dutt,Spectral methods for initial boundary value problem-an alternative approach,SIAM J.Numer.Anal.,27,4(1990),885-903.
    [9]
    D.Gottlieb,Numerical analysis of spectral method,CBMS-NSF,Regional Conference Series in Applied Math.,26(1977)
    [10]
    R.A.Adams,Sobolev Spaces,Academia Press(1975)."
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (2282) PDF downloads(602) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return