Tian Hong-jiong, Kuang Jiao-xun. Numerical Stahility Analysis of Numerical Nethods for Volterra integral Equations with Delay Argument[J]. Applied Mathematics and Mechanics, 1995, 16(5): 451-457.
Citation: Tian Hong-jiong, Kuang Jiao-xun. Numerical Stahility Analysis of Numerical Nethods for Volterra integral Equations with Delay Argument[J]. Applied Mathematics and Mechanics, 1995, 16(5): 451-457.

Numerical Stahility Analysis of Numerical Nethods for Volterra integral Equations with Delay Argument

  • Received Date: 1994-05-23
  • Publish Date: 1995-05-15
  • The present paper deals with the stability properties of numerical methods for Volterra integral equations with delay argument. We assess the numerical stability of nunterical methods with respect to the followhlg test equations where τ is a positive constant, and p and q are complex valued. We investigate the stability properties of reducible quadrature method and θ-methods in the case of the above test equations.
  • loading
  • [1]
    S.Amni,C.T.H.Baker,P.J.van der Houwen and P.H.M.Walkenfelt,Stability analysis of numerical methods for Volterra integral equations with polynomial convolution kernels,J.Integral Equation,5(1983),73-93.
    [2]
    C.T.H.Baker and M.S.Keech,Stability region in the numerical treatment of Volterra integral equations,SIAM J.Numer.Anal.,15(1978),349-417.
    [3]
    R.Bellman and K.L.Cooke,Differential-Difference Equations,Academic Press,New York,San Francisco,London(1953).
    [4]
    J.M.Bownds,J.M.Cushing and R.Schutte,Existence,uniqueness and extendility of solutions of Volterra integral system with multiple variable lags,Funkcial.Ekvac.,19(1976),101-111.
    [5]
    B.Cahlon,J.Nachman and D.Schmidt,Numerical solution of Volterra integral equations with delay arguments,J.Integral Equations,7(1984)',191-208.
    [6]
    B.Cahlon,On the numerical stability of Volterra integral equations with delay argument,J.C.A.M.,33(1990),97-104.
    [7]
    G.Dahlquist,A special stability problem for linear multistep methods,BTT,8(1963),27-43.
    [8]
    T.Grand,Numerical methods for integration of delay differential equations,Thesis.Dpto.Mat.Apl.Univ.Zeragoza(1986).
    [9]
    K.J.intt Hout,A new interpolation procedure for adapting Runge-Kutta methods to delay differential equations,Reporthr.TW-90-09,Dept.Math.and Comput.Sc.Univ.of Leiden(1990).
    [10]
    K.J.intt Hout and M.N.Spijker,The θ-methods in the numerical solhtion of delay differential equations,Rep.TW-89-03,Univ.Leiden(1989).
    [11]
    Z.Jackiewicz,Asymptotic stability analysis of θ-methods fro: functional differential equations,Numer.Math.,48(1984),389--396.
    [12]
    J.D.Lambert; Computational Methods in Ordinary Differential Equations,Wiley,New York(1973).
    [13]
    Lu Lian-hua,Numerical Stability of the θ-methods for systems of differential equations with sereval delay terms,or.C.A.M.,34(1991),291-304.
    [14]
    M.Marsden,Geomen T of Polynomials,Amer.Mathematical Soci.,Providence,RI(1966).
    [15]
    D.Morugim.Impulsive Structures with Delayed Feedback,Moscow(1961).(in Russian).
    [16]
    D.Morugim,Resistence of impact with retarded inverse connections,Sovetskoe Radio(1961).(in Russian).
    [17]
    M.G.Roth,Difference methods for stiff delay differential equations,Thesis,Dept.Comput.Sci.,Univ.Illinois at Urbana-Champaign,Urbana,IL(1980).
    [18]
    Tian Hong-jiong and Kuang Jiao-xun,The stability of the θ-methods in the numerical solution of delay differential equations with several delay terms,J.C.A.M.(1994).
    [19]
    P.H.M.Walkenfelt,The construction of reducible quadrature rules for Volterra integral and integral-differential equations,IMA J.Numer.Anal.,2(1982),131-152
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (2077) PDF downloads(693) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return