Chang Shih-sen. Ekeland’s Variational Principle and Caristi’s Coincidence Theorem for Set-Valued Mappings in Probabilistic Metric Spaces[J]. Applied Mathematics and Mechanics, 1993, 14(7): 575-582.
 Citation: Chang Shih-sen. Ekeland’s Variational Principle and Caristi’s Coincidence Theorem for Set-Valued Mappings in Probabilistic Metric Spaces[J]. Applied Mathematics and Mechanics, 1993, 14(7): 575-582.

# Ekeland’s Variational Principle and Caristi’s Coincidence Theorem for Set-Valued Mappings in Probabilistic Metric Spaces

• Publish Date: 1993-07-15
• By using the partial ordering method,a more general type,of Ekeland's variational principle and a set-valued Caristi's coincidence theorem in probabilistic metric spaces are obtained.In addition,we give a simple direct proof of the equivalence between these two theorems in probabilistic metric spaces.
•  [1] Caristi,J.,Fixed point theorem for mappings satisfying inwardness conditions,Trans.Amer.Math.Soc.,215(1976),241-251. [2] Ekeland,I.,Nonconvex minimization problems,Bull.Amer.Math.Soc.(New Series),1(1979),443-474. [3] Schweizer,B.and A.Sklar,Statistical metric spaces,Pacific J.Math.,10,(1960),313-334. [4] Schweizer,B.,A.Sklar and E.Thorp,The metrization of statistical metric spaces,Pacific J.Math.,10(1960),673-675. [5] Zhang Shi-sheng and LuoQun,Set-valued Caristi's fixed point theorem and Ekeland's variational principle,Applied Math,and Mech.,10,2(1989),119-121. [6] Zhang Shi-sheng,Chen Yu-qing and Guo Jin-li,Ekeland's variational principle andCaristi's fixed point theorem in probabilistic metric spaces,Acta Math.Appl.Sinica,3(1991). [7] 史树中,Ekeland变分原理与Caristi不动点定理的等价性,数学进展,16(1987),203-206. [8] 张石生,《不动点理论及应用》,重庆出版社(1984). [9] Park,S.,J.Korean Math.Soc.,19(1983),143-151.

### Catalog

###### 通讯作者: 陈斌, bchen63@163.com
• 1.

沈阳化工大学材料科学与工程学院 沈阳 110142