Citation: | Chang Shih-sen. Ekeland’s Variational Principle and Caristi’s Coincidence Theorem for Set-Valued Mappings in Probabilistic Metric Spaces[J]. Applied Mathematics and Mechanics, 1993, 14(7): 575-582. |
[1] |
Caristi,J.,Fixed point theorem for mappings satisfying inwardness conditions,Trans.Amer.Math.Soc.,215(1976),241-251.
|
[2] |
Ekeland,I.,Nonconvex minimization problems,Bull.Amer.Math.Soc.(New Series),1(1979),443-474.
|
[3] |
Schweizer,B.and A.Sklar,Statistical metric spaces,Pacific J.Math.,10,(1960),313-334.
|
[4] |
Schweizer,B.,A.Sklar and E.Thorp,The metrization of statistical metric spaces,Pacific J.Math.,10(1960),673-675.
|
[5] |
Zhang Shi-sheng and LuoQun,Set-valued Caristi's fixed point theorem and Ekeland's variational principle,Applied Math,and Mech.,10,2(1989),119-121.
|
[6] |
Zhang Shi-sheng,Chen Yu-qing and Guo Jin-li,Ekeland's variational principle andCaristi's fixed point theorem in probabilistic metric spaces,Acta Math.Appl.Sinica,3(1991).
|
[7] |
史树中,Ekeland变分原理与Caristi不动点定理的等价性,数学进展,16(1987),203-206.
|
[8] |
张石生,《不动点理论及应用》,重庆出版社(1984).
|
[9] |
Park,S.,J.Korean Math.Soc.,19(1983),143-151.
|