Cheng Xiang-sheng. The Generalized Variational Principles in Applications for Nonlinear Structural Analysis[J]. Applied Mathematics and Mechanics, 1993, 14(5): 397-406.
 Citation: Cheng Xiang-sheng. The Generalized Variational Principles in Applications for Nonlinear Structural Analysis[J]. Applied Mathematics and Mechanics, 1993, 14(5): 397-406.

# The Generalized Variational Principles in Applications for Nonlinear Structural Analysis

• Received Date: 1990-01-04
• Publish Date: 1993-05-15
• This paper discusses the generalized variational principles founded by the technique of Lagrangian multipliers in structural mechanics and analyzes the nonlinear statically indeterminate structures. It is assumed that the stress-strain relationship of the materials of structures has the form of σ=βε1/m or τ=Cγ1/m, namely, the physical equations of structures have the shape of exponential functions. Several examples are given to illustrate the statically indeterminate structures such as the trusses, beams, frames and torsional bars.
•  [1] 钱伟长,《关于弹性力学的广义变分原理及其在板壳问题上的应用》,科学出版社(1964). [2] 钱伟长,弹性理论中广义变分原理的研究及其在有限元计算中的应用,力学与实践,1 (1)(1979), 16-24及1(2) (1979), 18-27. [3] 钱伟长,《变分法及有限元》(上册),科学出版社(1980). [4] 钱伟长,拉氏乘子法.高阶拉氏乘子法和弹性理论中更一般的广义变分原理,应用数学和力学,4(2) (1983). [5] 钱伟长,《广义变分原理》,知识出版社(1985). [6] 成祥生,待定乘数法在解超静定杆系结构问题中的应用,江苏省力学会论文91964). [7] 成祥生,材料力,乒中某些超静定结构的一种解法,力学与实践.1(1) (1979), 46-47. [8] 成祥生,结构分析中的广义变分原理及其应用,应用数学和力学,6(7) (1985), 639-648. [9] W ashizu, K.,(鹜津久一郎),Trariationad Method in Elasticity and Plasticity,Perga-man, London (1968). [10] 鸳津久一郎,《コネルヂ原理入门》.培风馆(1970). [11] Pian, T,H,(卞学璜),Tong Pin(董平),Finite element methods in continuum mechanics, Adv, in App.Mec,,12(1972),1-53. [12] 薛大为.建议一组关于极限分析的定理.科学通报,20(4) (1975), 81. [13] Фихтенголъц Г.М.,Курс Дuфференчцалзнозо ц Иumeipaлънoio Исччсленця,Т.I.Гостехиздат.М.Л.(1949) [14] Timoshenko,S.and J.Gere,Mechanics of Materials,Van Nostrand Reinhold Company,(1972) [15] Engesser,F.,On statically indeterminate frame with any low of deformation and on theorem of minimum complementary energy,Jour.of Arch and Engin.Union,Hannover,35(1889) 733-744.(in German) [16] Westergaard,H.M.,On the method of complementary energy and its applications to structures stressed beyond the proportional limit,to buckling and vibrations to suspension bridges,Proc.of ASCE,67,2(1941) 199. [17] Westergaard,H.M.,On the method of complementary energy,Trans.of ASCE,107,(1942) 765-793. [18] 钱令希,余能原理,中国科学,1(1950)449. [19] Charlton,T.M.,Analysis of statically-indeterminate structures by the complementary energy method,Engineering,174(1952) 389-391. [20] Brown,E.H.,The energy theorems of structural analysis,Engineering,179(1955) 305-308,339-342,400-403. [21] Hoff,N.J.,The Analysis of Structures,John Wiley and Sons,Inc.,New York,(1956) 493. [22] Argyris,J.H.and S.Kelsey,Energy Theorems and Structural Analysis,Butterworth and Co.,Ltd.,London,(1960) 85. [23] Langhaar,H.L.,Energy Methods in Applied Mechancis,John Wiley and Sons,Inc.,New York,(1962) 350. [24] Au,T.,Elementary Structural Mechancis,(1963) 521. [25] Libove,C.,Complementary energy method for finite deformations,Pro.of ASCE,Jour.of Engi.Mech.Divi.90,EM6(1964) 49-71. [26] Oran,C.,Complementary energy method for buckling,Pro.of ASCE,Jour.of EMD.,93,EM1(1967) 57-75. [27] Oden,J.T.Mechanics of Elastic Structures,(1967) 381. [28] Oran,C.,Complementary energy concept for large deformations,Proc.of ASCE,Jour.of Struc.Divi.93,ST1(1967) 57-75．

### Catalog

###### 通讯作者: 陈斌, bchen63@163.com
• 1.

沈阳化工大学材料科学与工程学院 沈阳 110142

## Article Metrics

Article views (1765) PDF downloads(554) Cited by()

/