Zhong Wan-xie, Ouyang Hua-jiang. Hamiltonian System and Simpletic Geometry in Mechanics of Composite Materials(Ⅱ)--Plane Stress Problem[J]. Applied Mathematics and Mechanics, 1992, 13(12): 1031-1035.
 Citation: Zhong Wan-xie, Ouyang Hua-jiang. Hamiltonian System and Simpletic Geometry in Mechanics of Composite Materials(Ⅱ)--Plane Stress Problem[J]. Applied Mathematics and Mechanics, 1992, 13(12): 1031-1035.

Hamiltonian System and Simpletic Geometry in Mechanics of Composite Materials(Ⅱ)--Plane Stress Problem

• Received Date: 1991-08-02
• Publish Date: 1992-12-15
• The fundamental theory presented in part(I)[8] is used to analyze anisotropic plane stress problems.First we construct the generalized variational principle to enter Hamiltonian system and get Hamiltonian differential operator matrix;then we solve eigen problem;finally,we present the process of obtaining analytical solutions and semi-analytical solutions for anisotropic plane stress porblems on rectangular area.
•  [1] 钟万勰,分离变量法与哈密尔顿体系,计算结构力学及其应用,8(3)(1991). [2] 钟万勰,条形域平面弹性问题与哈密尔顿体系,大连理工大学学步良,31(4)(1991). [3] Arnold,V.I.,Mathematical Methods of Classical Mechanics,Springer-Verlag.New York Inc.(1978). [4] 列赫尼茨基,c,г.,《各向异性板》胡海昌译,科学出版社,北京(1963). [5] 徐芝伦,《弹性力学》人民教育出版社,北京(1979). [6] 秦孟兆,辛几何及计算哈密顿力学,力学与实践,12(6)(1990). [7] Zhong,Wan-xie and Zhong Xiang-xiang,Computational structural mechanics,optimal control and semi-analytical method for PDE,Computer and Structures,37,6(1990). [8] 钟万勰、欧阳华江,复合材料力学的Hamilton体系和辛几何方法(Ⅰ)——一般原理,应用数学和力学.13(11)(1992).

Catalog

通讯作者: 陈斌, bchen63@163.com
• 1.

沈阳化工大学材料科学与工程学院 沈阳 110142

Article Metrics

Article views (2168) PDF downloads(629) Cited by()

/