Zhong Wan-xie, Ouyang Hua-jiang. Hamiltonian System and Simpletic Geometry in Mechanics of Composite Materials(Ⅰ)——Fundamental Theory[J]. Applied Mathematics and Mechanics, 1992, 13(11): 971-975.
 Citation: Zhong Wan-xie, Ouyang Hua-jiang. Hamiltonian System and Simpletic Geometry in Mechanics of Composite Materials(Ⅰ)——Fundamental Theory[J]. Applied Mathematics and Mechanics, 1992, 13(11): 971-975.

# Hamiltonian System and Simpletic Geometry in Mechanics of Composite Materials(Ⅰ)——Fundamental Theory

• Publish Date: 1992-11-15
• For the first time,Hamiltonian systemused in dynamics is introduced to formulate statics and Hamiltonian equation is derived corresponding to the original governing equation,which enables separation of variables to work and eigen function to be obtained for the boundary problem.Consequently,analytical and semi-analytical solutions can be got.The method is especially suitable to solve rectangular plane problem and spatial prism in elastic mechanics.The paper presents a new idea to solve partially differential equation in solid mechanics.The flexural problem and plane stress problem of laminated plate are studied in detail.
•  [1] Sokolnikoff,I.S.,Mathematical Theory of Elasticity,(2nd edition),Mac Graw-Hill(1956). [2] Courant,R.and D.Hilbert,《数学物理方法》(钱敏,郭敦仁译),北京:科学出版社(1957). [3] Zhong,W.and X.Zhong,Computational structural mechanics,optimal control and semi-analytical method for PDE,Computer and Structures,37,6(1990). [4] 钟万勰、林家浩、裘春航,相同子结构串的本征对问题及展开解法,力学学报,23(1)(1991). [5] 钟万勰,离散LQ控制问题本征解,计算结构力学及其应用,7(2)(1990). [6] 钟万勰、杨再石.连续时间LQ控制主要本征对的算法,应用数学和力学,12(1)(1991). [7] 解学书,《最优控制理论与应用》,北京:清华大学出版社(1986). [8] 钟万勰,条形域平面弹性问题与哈密尔顿体系,大连理工大学学报,31(4)(1991). [9] Arnold,V.I.,Mathematical Methods of Classical Mechanics,Springer-Verlag,New York,Inc.(1978). [10] R,M,琼斯,《复合材料力学》,朱颐龄等译,上海科学技术出版社(1981). [11] 秦孟兆,辛几何及计算哈密顿力学,力学与实践,12(6)(1990).

### Catalog

###### 通讯作者: 陈斌, bchen63@163.com
• 1.

沈阳化工大学材料科学与工程学院 沈阳 110142