Zhao Wei-li. Singular Perturbation of Boundary Value Problems for Second Order Nonlinear Ordinary Differential Equations on Infinite Interval (Ⅱ)[J]. Applied Mathematics and Mechanics, 1991, 12(11): 1037-1048.
 Citation: Zhao Wei-li. Singular Perturbation of Boundary Value Problems for Second Order Nonlinear Ordinary Differential Equations on Infinite Interval (Ⅱ)[J]. Applied Mathematics and Mechanics, 1991, 12(11): 1037-1048.

# Singular Perturbation of Boundary Value Problems for Second Order Nonlinear Ordinary Differential Equations on Infinite Interval (Ⅱ)

• Publish Date: 1991-11-15
• In this paper the existence of solutions of the singularly perturbed boundary value problems on infinite interval for the second order nonlinear equation containing a small parameter is ε>0: examined, where αi, β are constants, and i=0,1. Moreover, asymptotic estimates of the solutions for the above problems are given.
•  [1] 伍卓群,一类常微分方程边值问题的奇摄动—(I)方程式的情形,吉林大学自然科学学报.(2)(1963),91-104. [2] 周钦德,一类常微分方胜奇摄动问题解的斩近展开,占沐大学自然科学学报,(4)(1079), 1-19. [3] 周钦德.一类奇摄动迩池问题解的渐近展一开,吉林大学自然科学学报,(4)(1980), 12-26. [4] 周钦虑,一类奇摄动边值问题近以常数解的渐近展开,占林大学自然科学字报,(2)(1981).12-22. [5] 周钦德,某类奇摄动边值问题解的渐近展开,吉林大学自然科学学报,(3)(1981), 37-50. [6] 赵为礼,一类常微分方程无穷边值问题的奇摄动,吉林大学自然科学学报,(3)(1981), 27-36. [7] Nagumo.M.,Über die Differentialgleichung y'=f(x.y,y')Proc.Phys.Math.Soc.Japan,19 Ser 3,10 (1937),861-866. [8] Тихонов А.Н.,Системы дифференналъных уравнений,содержащие малыйлараметр производных,Маm.Сб.31(73)(1952), 574-586 [9] Бриш Н.И.,О краевых,задлах для уравнения зу"=f(x.y,y')при малых з ДАН СССР,XCV, (3)(1954), 429-432 [10] Klaasen,G.A.,Differential inequalities and existence theorems for second and third order boundary value problems,J.Diff.Eqs.10(1971),529-537. [11] Jackson.L.K.,Subfunctions and second-order ordinary differential inequalities.Adv.Math.2(1968),307-363. [12] 赵为礼,二阶非线性无穷边值问题的奇摄动(I),应用数学和力学,10(1) (1989), 43-50

### Catalog

###### 通讯作者: 陈斌, bchen63@163.com
• 1.

沈阳化工大学材料科学与工程学院 沈阳 110142