Zhou Yuan-quan. Classical Limits for the Coefficient of Variation for the Normal Distribution[J]. Applied Mathematics and Mechanics, 1989, 10(5): 411-418.
 Citation: Zhou Yuan-quan. Classical Limits for the Coefficient of Variation for the Normal Distribution[J]. Applied Mathematics and Mechanics, 1989, 10(5): 411-418.

# Classical Limits for the Coefficient of Variation for the Normal Distribution

• Publish Date: 1989-05-15
• The exact classical limits for the coefficient of variation c for the normal distribution are derived.The hand-calculating approximated classical limits for c having high accuracy are given to meet practical engineering needs.Using Odeh and Owen's computational method and Brent's algorithm,the tables for the r-upper exact classical limits of coefficient of variation for normal distribution are calculated for the different confidence coefficient γ,the sample size n=1(1)30,40,60,120,the sample coefficient of variation ε=0.01(0.01)0.20.It is shown that if n<8,ε<0.20,then the γ-upper exact classical limits cu for c are slightly higher than the exact fiducial limits cu,F for c if.n>8,c<0.02,then cu-cu,F<5×10-6.
•  [1] 周源泉,正态变差系数的Fiducial及Bapes限,机械工程学报,22,3(1986),67-74. [2] Mckay,A.T.,Distribution of the coefficient of variation and extended t-distribution,J.R.Statist.Soc.,95(1932),695-698. [3] Pearson,E.S.,Comparison of A.T.Mckay's approximation with experimental sampling results,J.R.Statist.Soc.,95(1932),703-704. [4] Fieller,E.C,A numerical test of the adequacy of A.T.Mckay's approximation,J.R.Statist.Soc.,95(1932),699-702. [5] Koopmans,L.H.,D.B.Owen and J.I.Rosenblatt,Confidence intervals for the coefficient of variation for the normal and lognormal distribution,Biometrika,51(1964),25-32. [6] Johnson,N.L.and B.L.Welch,Application of the noncentral t-distribution Biometrika,27(1940),362-381. [7] 周源泉,正态可靠寿命的玩yes限、Fiducial限及经典限,电子学报,14,2(1986),46-52. [8] 山内二郎,《统计数值表》,JSA(1972). [9] Odeh,R.E.and D.B.Owen,Tables for Normal Tolerance Limits,Sampling Plans and Screening,Dekker(1980). [10] Brent,R.P.,An algorithm with guaranteed convergence for finding a zero of a function,Comput.J.,14(1971),422-425.

### Catalog

###### 通讯作者: 陈斌, bchen63@163.com
• 1.

沈阳化工大学材料科学与工程学院 沈阳 110142