LIANG Jian-shu, CHEN Yu-shu, Andrew Y. T. Leung. Robust Control of Periodic Bifurcation Solutions[J]. Applied Mathematics and Mechanics, 2004, 25(3): 239-246.
Citation: LIANG Jian-shu, CHEN Yu-shu, Andrew Y. T. Leung. Robust Control of Periodic Bifurcation Solutions[J]. Applied Mathematics and Mechanics, 2004, 25(3): 239-246.

Robust Control of Periodic Bifurcation Solutions

  • Received Date: 2002-11-29
  • Rev Recd Date: 2003-11-20
  • Publish Date: 2004-03-15
  • The topological bifurcation diagrams and the coefficients of bifurcation equation were obtained by C-L method. According to obtained bifurcation diagrams and combining control theory, the method of robust control of periodic bifurcation was presented, which differs from generic methods of bifurcation control. It can make the existing motion pattern into the goal motion pattern. Because the method does not make strict requirement about parametric values of the controller, it is convenient to design and make it. Numerical simulations verify validity of the method.
  • loading
  • [1]
    Krylov N,Bogoliubov N.Les methods de la mecarique nonlinear[J].Monographie.Chaire de la Phys and Math of Academic Science.U K,1934,8:44—51.
    CHEN Yu-shu,Langford W F.The subharmonic bifurcation solution of nonlinear Mathieu's equation and Euler dynamically bucking problem[J].Acta Mech Sinica,1988,20(4):522—532.
    Yu P,Huseyin K.Parametrically exited nonlinear systems:a comparison of certain methods[J].Int J Non-Linear Mechanics,1998,33(6):967—978. doi: 10.1016/S0020-7462(97)00061-9
    Chow S Y,Hale J K.Methods of Bifurcation Theory[M].New York:Springer,1982.
    Golubisky M,Schaeffer D G.Singularities and Groups in Bifurcan'on Theory(Vol.[STHZ]. 1[STBZ]. )[M].New York:Springer,1985.
    Bogoliubov N,Mitropolsky Y A.Asymptotic Methods in the Theory of Nonlinear Oscillations[M].New York:Gordon & Breach,1961.
    Nayfeh A H,Mook D T.Nonlinear Osci Uations[M].New York:Wiley,1979.
    Abed E H,Wang H O,Chen R C.Stabilization of period doubling bifurcation and implications for control of chaos[J].Physica D,1994,70(1):154—164. doi: 10.1016/0167-2789(94)90062-0
    Wang H O,Abed E H.Bifurcation control of a chaotic system[J].Automatica,1995,31(9):1213—1226. doi: 10.1016/0005-1098(94)00146-A
    Kang W.Bifurcation and normal form of nonlinear control systems—Parts Ⅰand Ⅱ[J].SIAM J Contr Optim,1998.36(1):193—232.
    Chen G,Dong X.From Chaos to Order:Methodologies,Perspectives and Applications[M].Singapore:World Scientific Pub Co,1998.
    Abed E H.Bifurcation-theoretic issues in the control of voltage collapse[A].In:Chow J H,Kokotovic P V,Thomas R J Eds.Proc IMA Workshop on Systems and Control Theory for Power Sys[C].New York:Springer,1995,1—21.
    Chen G,Lu J,Yap K C.Controlling Hopf bifurcation[A].In:Ueta T,Chen G Eds.Proc Int Symp Circ Sys[C].3.USA:Monterey, C A,1998,693—642.
    Basso M,Evangelisti A,Genesio R,et al.On bifurcation control in time delay feedback systems[J].Int J Bifur Chaos,1998,8(4):713—721. doi: 10.1142/S0218127498000504
    Chen G.Controlling Chaos and Bifurcation in Engineering Systems[M].Boca Raton,FL:CRC Press,1999.
    Chen G,Moiola J L,Wang H O.Bifurcation control:theories,methods and applications[J].Int J Bifur Chaos,2000,10(3):511—548.
    CHEN Yu-shu,Leung Andrew Y T.Bifurcation and Chaos in Engineering[M].London:Springer,1998.
    LI Xin-ye,CHEN Yu-shu,WU Zhi-qiang,et al.Bifurcation of nonlinear normal modes of M-DOF systems with internal resonance[J].Acta Mechanica Sinica,2002,34(3):104—407.
    Sundararajan P,Noah S.Dynamics of forced nonlinear systems using shooting arc length continuation method[J].ASME J Vib Acoustics,1995,119(1):9—20.
  • 加载中


    通讯作者: 陈斌,
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (2516) PDF downloads(600) Cited by()
    Proportional views


    DownLoad:  Full-Size Img  PowerPoint