Shen Hui-chuan. Solutions of Magnetohydrodynamics Equations——The Theory of Functions of a Complex Variable under Dirac-Pauli Representation and Its Application in Fluid Dynamics(IV)[J]. Applied Mathematics and Mechanics, 1986, 7(9): 801-811.
Citation: Shen Hui-chuan. Solutions of Magnetohydrodynamics Equations——The Theory of Functions of a Complex Variable under Dirac-Pauli Representation and Its Application in Fluid Dynamics(IV)[J]. Applied Mathematics and Mechanics, 1986, 7(9): 801-811.

Solutions of Magnetohydrodynamics Equations——The Theory of Functions of a Complex Variable under Dirac-Pauli Representation and Its Application in Fluid Dynamics(IV)

  • Received Date: 1985-05-24
  • Publish Date: 1986-09-15
  • This work is the continuation of the discussion of Refs.[1 3],(i) We turn the Magnetohydrodynamics equations of isentropic compressible and non-dissipative magneto-flow into the form of the ideal hydrodynamics equations in this paper; we can obtain the general Chaplygin equation from Ref.[3],and the general sduction of this equation.(ii) We apply the theory of functions of a complex rariable under Dirac-pauli representation,turn the general Magnetohydrodynamics equations of incompressible mageto-flow into two nonlinear equations for flow function and "magneto-flow function",and obtain the exact stable solution of incompressible magnetohydrodynamics equations under the condition of stable magnetic field(i.e.under conditon of equality for kinematical viscid coefficient or viscid diffusion coefficient with magnetic diffusion coefficient).
  • loading
  • [1]
    沈惠川,Dirac-Pauli表象的复变函数理论及其在流体力学中的应用(Ⅰ).应用数学和力学,7,4(1986),365-382.
    [2]
    沈惠川,Navier-Stokes方程的精确解,Dirac-Pauli表象的复变函数理论及其在流体力学中,的应用(Ⅰ).应用数学和力学,7,6(1986),517-522.
    [3]
    沈惠川,三维非定常等嫡流中的Chaplygin方程,Dirac-Pauli表象的复变函数理论及其在流体力学中的应用(Ⅰ),应用数学和力学,7,8(1986),703-712,
    [4]
    Lapedes,D,N,,《科学技术百科全书》,3,理论物理学、核物理学、核工程学;5,电学与电磁学,固体物理学、热学、热力学;科学出版社(1981.1983).
    [5]
    Alfren,H.,and C-G.Fälthammar,《宇宙电动力学》,戴世强译,科学出版社(1974),
    [6]
    Alfven,H.,On the origin of the Solar System,Clarendon Press.,Oxford(1954).
    [7]
    Ландау Л.Д.и Е.М.Лифшиц,《连续媒质电动力学》,周奇译,人民教育出版社(1963).
    [8]
    沈惠川,动力应力函数张量及弹性静力学的通解,中国科学技术大学学报,14,增刊1-JCUST84016(1984),95-102,
    [9]
    沈惠川,动力应力函数张量,应用数学和力学,3,6(1982),829-834,
    [10]
    沈惠川,弹性动力学的通解,应用数学和力学,6,9(1985),791-796,
    [11]
    沈惠川,均匀不可压缩蠕流动力学的通解,自然杂志,7,10(1984),799; 7,12(1984),940,
    [12]
    沈惠川,单色弹性波谱的分裂,应用数学和力学,5,4(1984),541-551,
    [13]
    沈惠川,弹性基上的薄板在侧向动载荷、中面力和外场联合作用下的小挠度弯曲,应用数学和力学,5,6(1984),817-827.
    [14]
    沈惠川,弹性大挠度问题uon Karman方程与量子本征值间题Schrodinger方程的联系,应用数学和力学,6,8(1985),711-725,
    [15]
    沈惠川,壳体理论中的Schrodinger方程,应用数学和力学,6,10(1885),887-900,
    [16]
    沈惠川,理想塑性问题中的一般方程、双调和方程和本征方程,应用数学和力学,7,1(1986).
    [17]
    Ландау Л.Д.и Е.М.Лифшиц,《连续介质力学》,彭旭麟译,人民教育出版社(1958).《流体力学》,孔祥言、徐燕侯.庄礼贤译,高等教育出版社(1983-1984).磁流体力学方程组的解—Dirac-Pauli表象的复变函数理论及其在流体力学中的应用(IV) 811.
    [18]
    汤川秀榭.《现代物理学の基础》(第一版),1,古典物理学(Ⅰ),岩波书店(1975).
    [19]
    Prandtl,L.,K.Oswatitsch and K.Wieghardt.,《流体力学概论》,郭永怀,陆士嘉译,科学出版社(1981).
    [20]
    钱学森,《气体动力学诸方程》,(气体动力学基本原理A编).徐华舫译,科学出版社(1966),
    [21]
    Chaplygin,C.A.,Über gasstrahlen,Wiss.Ann.Univ.Moskan Math.Phys.,21(1904) 1-121;or.NACA.TM 1063.
    [22]
    Dirac,P,A,M,,《量子力学原理》,陈咸亨译,科学出版社(1965),
    [23]
    Flüigge,S.,《实用量子力学》,宋孝同等译,人民教育出版社(1981-1983),
    [24]
    谷内俊弥、西原功修,《非线性波动》,徐福元等译,原子能出版社(1981),
    [25]
    Eckhaus,W,and A,van Harten,《逆散射变换和孤立子理论》,黄迅成译,陈以鸿校,上海科学技术文献出版社(1984).
    [26]
    Захаров В.Е.,С.В.Манаков.,С.П.Новиков и Л.П.Питаевский,《孤子理论》彭启才译,侯伯元校,科学出版社(1985).
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (2341) PDF downloads(1020) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return