Liang Guo-ping, Fu Zi-zhi. Mixed Hybrid Penalty Finite Element Method and Its Applications[J]. Applied Mathematics and Mechanics, 1984, 5(3): 377-390.
Citation: Liang Guo-ping, Fu Zi-zhi. Mixed Hybrid Penalty Finite Element Method and Its Applications[J]. Applied Mathematics and Mechanics, 1984, 5(3): 377-390.

Mixed Hybrid Penalty Finite Element Method and Its Applications

  • Received Date: 1983-08-10
  • Publish Date: 1984-06-15
  • The penalty and hybrid methods are being much used in dealing with the general incompatible element, With the penalty method convergence can always be assured, but comparatively speaking its accuracy is lower, and the condition number and sparsity are not so good. With the hybrid method, convergence can be assured only when the rank condition is satisfied. So the construction of the element is extremely limited. This paper presents the mixed hybrid penalty element method, which combines the two methods together. And it is proved theoretically that this new method is convergent, and it has the same accuracy, condition number and sparsity as the compatible element. That is to say, they are optimal to each other.Finally, a new triangle element for plate bending with nine freedom degrees is constructed with this method (three degreesof freedom are given on each corner——one displacement and tworotations), the calculating formula of the element stiffness matrix is almost the same as that of the old triangle element for plate bending with nine degrees of freedom. But it is converged to true solution with arbitrary irregrlar triangle subdivision. If the true solution u∈H3 with this method the linear and quadratic rates of convergence are obtianed for three bending moments and for the displacement and two rotations respectively.
  • loading
  • [1]
    (1)Babuska,I.and M.Zlamal,Nonconforming elements in finite element method with penalty,SIAM J.Numer,Anal.,Vol.10,No.5(1973).
    [2]
    (2) Feng Kang,On the theory of discontinuous finite element method,Journal of Computing Mathematics,1:4 (1979).(in Chinese).
    [3]
    (3) Fix,G.J.,G.Liang and D.H.Lee,Penalty-hybrid finite element method.(to be published in Math.and Comp.with Appl.).
    [4]
    (4) Brezzi,F.,On the ExisTence,Uniqueness and Approximation of Saddle Point Problems Arising from Lagragian Multipliers,RAIRO Numer.Anal.,8 R 2,(1974).
    [5]
    (5) Oden,J.T.and J.N.Reddy,Variational Methods in Theoretical Mechanics,Spring-Verlag,Heidelberg,(1976).,.
    [6]
    (6) Ciarlet,P.,The Finite Element Method for Elliptic Problems,North Holland Publisher,(1979).
    [7]
    (7) Oden,J.T.and J.N.Reddy,Mathematical Theory of Finite Elements,John Wiley & Sons,New York,(1975).
    [8]
    (8) Treves,F.,Basic Linear Partial Differential Equations,Academic Press,New York,(1975).
    [9]
    (9) Liang Guo-ping and Fu Zi-zhi,The construction of large elements in finite element method,Applied Math ematics and Mechanics,Vol.4,No.3,(1983).
    [10]
    (10) Kordratev,V.A.,Boundary Value Problems for Elliptic Equations in Domains with Conical or Singular Points,Trudy Moskov Mat.OBSC,16(1967).
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1963) PDF downloads(627) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return