Jin Wen-lu. A Spectral Resolving Method for Analyzing Linear Random Vibrations with Variable Parameters[J]. Applied Mathematics and Mechanics, 1984, 5(1): 111-116.
Citation:
Jin Wen-lu. A Spectral Resolving Method for Analyzing Linear Random Vibrations with Variable Parameters[J]. Applied Mathematics and Mechanics, 1984, 5(1): 111-116.
Jin Wen-lu. A Spectral Resolving Method for Analyzing Linear Random Vibrations with Variable Parameters[J]. Applied Mathematics and Mechanics, 1984, 5(1): 111-116.
Citation:
Jin Wen-lu. A Spectral Resolving Method for Analyzing Linear Random Vibrations with Variable Parameters[J]. Applied Mathematics and Mechanics, 1984, 5(1): 111-116.
This paper is a development of Ref.[1].Consider the following random equation:(t)+2?(t)+02Z(t)=(a0+alZ(t)).I(t)+c,in which excitation I0(t)and response Z(t)are both random processes, and it is proposed that they are mutually independent.Suppose that I(t)=a(t)I0(t),a(t)is a known function of time and IO(t)is a stationary random process.In this paper, the spectral resolving form of the random equation stated above, the numenca solving method and the solutions in some special cases are considered.