FENG Wen-jie, LI Xiang-guo, WANG Shou-dong. Torsional Impact Response of a Penny-Shaped Crack in a Functional Graded Strip[J]. Applied Mathematics and Mechanics, 2004, 25(12): 1278-1284.
Citation: FENG Wen-jie, LI Xiang-guo, WANG Shou-dong. Torsional Impact Response of a Penny-Shaped Crack in a Functional Graded Strip[J]. Applied Mathematics and Mechanics, 2004, 25(12): 1278-1284.

Torsional Impact Response of a Penny-Shaped Crack in a Functional Graded Strip

  • Received Date: 2003-01-19
  • Rev Recd Date: 2004-07-06
  • Publish Date: 2004-12-15
  • The torsional impact response of a penny-shaped crack in a nonhomogeneous strip is considered.The shear modulus is assumed to be functionally graded such that the mathematics is tractable.Laplace and Hankel transforms were used to reduce the problem to solving a Fredholm integral equation.The crack tip stress field is obtained by considering the asymptotic behavior of Bessel function.Explicit expressions of both the dynamic stress intensity factor and the energy density factor were derived.And it is shown that,as crack driving force,they are equivalent for the present crack problem.Investigated are the effects of material nonhomogeneity and strip's highness on the dynamic fracture behavior.Numerical results reveal that the peak of the dynamic stress intensity factor can be suppressed by increasing the nonhomogeneity parameter of the shear modulus,and that the dynamic behavior varies little with the adjusting of the strip's highness.
  • loading
  • [1]
    Erdogan F. The crack problem for bonded nonhomogeneous materials under antiplane shear loading[J].ASME Journal of Applied Mechanics,1985,52(4):823—828. doi: 10.1115/1.3169153
    [2]
    Gerasoulis A, Srivastav R P. A Griffith crack problem for a nonhomogeneous medium[J].Internat J Engrg Sci,1980,18(2):239—247. doi: 10.1016/0020-7225(80)90023-3
    [3]
    Konda N, Erdogan F. The mixed-mode crack problem in a nonhomogeneous elastic medium[J].Engineering Fracture Mechanics,1994,47(4):533—545. doi: 10.1016/0013-7944(94)90253-4
    [4]
    Li C Y, Zou Z Z. Local stress field for torsion of a penny-shaped crack in a functionally graded material[J].Internat J Fracture,1998,91(2):L17—L22.
    [5]
    李春雨, 邹振祝, 段祝平. 功能梯度材料裂纹尖端动态应力场[J]. 力学学报,2001,33(2):270—274.
    [6]
    Copson E P. On certain dual integral equations[J].Proceedings Glasgow Mathematical Association,1961,5:19—24.
    [7]
    Zuo J Z, Sih G C. Energy density theory formulation and interpretation of cracking behavior for piezoelectric ceramics[J].J Theoret Appl Fracture Mech,2000,34(1):17—33. doi: 10.1016/S0167-8442(00)00021-5
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (2370) PDF downloads(531) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return