Jiang Fu-ru. On the Dirichlet Problem for a Quasilinear Elliptic Equation with a Small Parameter[J]. Applied Mathematics and Mechanics, 1981, 2(1): 21-47.
Citation: Jiang Fu-ru. On the Dirichlet Problem for a Quasilinear Elliptic Equation with a Small Parameter[J]. Applied Mathematics and Mechanics, 1981, 2(1): 21-47.

On the Dirichlet Problem for a Quasilinear Elliptic Equation with a Small Parameter

  • Received Date: 1980-02-20
  • Publish Date: 1981-02-15
  • The method of "boundary layer corrections" is developed to study the Dirichlet problem for a quasilinear elliptic equation in a bounded domain, when the degenerate equation has characteristics tangent to the boundary. The existence and uniqueness of solution have been proved. The uniformly valid asymptotic expansion of solution has been constructed.
  • loading
  • [1]
    Berger,M.S.and Fraenkel,L.E.,On the asymptotic solution of a nonlinear Dirichlet problem,J.Math,Mech 19(7),(1973),553-585.
    [2]
    Fife,P.C.,Semilinear elliptic boundary value problems with small parameters,Arch.Rat.Mech.and Anal.,52(2),(1973),205-232.
    [3]
    Roberts,P.H.,Singularities of Hartmann layers,Proc.Royal Soc.,Ser.A,300(1967),94-107.
    [4]
    Grasman,J.,On the birth of boundary layers,Math.Centre Tracts,36,Amsterdam,(1971).
    [5]
    Van Harten,A.J.,Nonlinear singular perturbation problems:Proofs of correctness of a formal approximation based on a contraction principle in a Banach space,J.Math.Anal,and Appl.,65(1),(1978),126-168.
    [6]
    Holland,C.J.,Singular perturbations in elliptic boundary value problems,J,Diff.Equ.,20(1),(1976),248-265.
    [7]
    Howes,F.A.Singularly perturbed semilinear elliptic boundary value problems,Comm.Partial Diff.Equ.,4(1),(1979),1-39.
    [8]
    Леликова,Е.Ф.,Об асимптоуике решения эллиптнческого уравявния второг порядка с малым пзрамбтром при старших цроизводпых,Дцфф.Урав.,12(10)(1976).1852-1865.
    [9]
    Ильин,А.М.,Калашников,А.С.,Олейнык,О.А.,Линсйиые уравнення второго поряка параболического типа,17,5(105),(1962),3-146.
    [10]
    Ладыженская,О.А.,Уральцева,Н.Н.,Линейные ы Квазилинейные Уравнення Эллыптнческоо Типа,Изд""Наука"",Москва(1964).
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1653) PDF downloads(540) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return