XU Gui-qiong, LI Zhi-bin. Explicit Solutions to the Coupled KdV Equations with Variable Coefficients[J]. Applied Mathematics and Mechanics, 2005, 26(1): 92-98.
Citation: XU Gui-qiong, LI Zhi-bin. Explicit Solutions to the Coupled KdV Equations with Variable Coefficients[J]. Applied Mathematics and Mechanics, 2005, 26(1): 92-98.

Explicit Solutions to the Coupled KdV Equations with Variable Coefficients

  • Received Date: 2002-11-08
  • Rev Recd Date: 2004-10-14
  • Publish Date: 2005-01-15
  • By means of sn-function expansion method and cn-function expansion method,several kinds of explicit solutions to the coupled KdV equations with variable coefficients are obtained,which include three sets of periodic wave-like solutions.These solutions degenerate to solitary wave-like solutions at a certain limit.Some new solutions are presented.
  • loading
  • [1]
    Hereman W,Banerjee P P,Korpel A. Exact solitary wave solutions of nonlinear evolution and wave equations using a direct algebraic method[J].J Phys A,Math Gen,1986,19(3):607—628. doi: 10.1088/0305-4470/19/5/016
    [2]
    Parkes E J,Duffy B R.The Jacobi elliptic function method for finding periodic-wave solutions to nonlinear evolution equations[J].Phys Lett A,2002,295(6):280—286. doi: 10.1016/S0375-9601(02)00180-9
    [3]
    HU Xing-biao, WANG Dao-liu,QIAN Xian-min.Soliton solutions and symmetries of the 2+1 dimensional Kaup-Kupershmidt equation[J].Phys Lett A,1999,262(6):409—415. doi: 10.1016/S0375-9601(99)00683-0
    [4]
    FAN En-gui,ZHANG Hong-qing.A note on the homogeneous balance method[J].Phys Lett A,1998,246(5):403—406. doi: 10.1016/S0375-9601(98)00547-7
    [5]
    WANG Ming-liang. Solitary wave solutions for variant Boussinesq equations[J].Phys Lett A,1995,199(3):169—172. doi: 10.1016/0375-9601(95)00092-H
    [6]
    FU Zun-tao, LIU Shi-kuo, LIU Shi-da,et al.New Jacobi elliptic function expansion and new periodic solutions of nonlinear wave equations[J].Phys Lett A,2001,290(2):72—76. doi: 10.1016/S0375-9601(01)00644-2
    [7]
    徐桂琼,李志斌.混合指数方法及其在非线性发展方程孤立波解中的应用[J].物理学报, 2002,51(5):946—950.
    [8]
    文双春,徐文成,郭旗,等.变系数非线性Schrdinger方程孤子的演化[J]. 中国科学,A辑,1997,27(10):949—953.
    [9]
    阮航宇, 陈一新.寻找变系数非线性方程精确解的新方法[J]. 物理学报,2000,49(2):177—180.
    [10]
    闫振亚,张鸿庆.2+1维广义变系数KP方程的相似约化[J]. 应用数学与力学,2000,21(6):585—589.
    [11]
    张解放, 陈芳跃. 截断展开方法和广义变系数KdV方程新的精确类孤子解[J].物理学报,2001,50(9):1648—1656.
    [12]
    张金良, 胡晓敏, 王明亮. 变系数KdV方程组的Backlünd变换及其精确解[J]. 杭州电子工业学院学报, 2002,22(1):59—61.
    [13]
    刘式适, 付遵涛, 刘式达,等. 变系数非线性方程的Jacobi椭圆函数展开解[J]. 物理学报, 2002,51(9):1923—1926.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (2969) PDF downloads(602) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return