ZHOU Ke-min, LI Jun-feng. Forming Michell Truss in Therr-Dimensions by Finite Element Method[J]. Applied Mathematics and Mechanics, 2005, 26(3): 349-355.
Citation: ZHOU Ke-min, LI Jun-feng. Forming Michell Truss in Therr-Dimensions by Finite Element Method[J]. Applied Mathematics and Mechanics, 2005, 26(3): 349-355.

Forming Michell Truss in Therr-Dimensions by Finite Element Method

  • Received Date: 2004-06-20
  • Rev Recd Date: 2004-11-20
  • Publish Date: 2005-03-15
  • The finite element method to form Michell truss in three-dimensions is presented. The orthotropic composite with fiber-reinforcement is employed as the material model to simulate Michell truss. The orientation and densities of fibers at nodes are taken as basic design variables. The stresses and strains at nodes are calculated by finite element method. An iteration scheme is suggested to adjust the orientations of fibers to be along the orientations of principal stresses, and the densities of fibers according to the strains in the orientations of fibers. The strain field satisfying Michell criteria and truss-like continuum are achieved after several iterations. Lastly, the Michell truss is showed by continuous lines, which are formed according to the orientations of fibers at nodes. Several examples are used to demonstrate the efficiency of the presented approach.
  • loading
  • [1]
    Michell A G M.The limits of economy of material in frame structure[J].Philosophical Magazine,1904,8(6):589—597. doi: 10.1080/14786440409463229
    [2]
    Prager W, Rozvany G I N.Optimization of structural geometry[A].In:Bednarek A R, Cesari L,Eds.Dynamical Systems[C].New York: Academic Press, 1977, 265—293.
    [3]
    Rozvany G I N.Structural Design via Optimality Criteria-The Prager Approach to Structural Optimization[M].Dordrecht: Kluwer Academic Publishers,1989,353—368.
    [4]
    Rozvany G I N.Some shortcomings in Michell's truss theory[J].Structural Optimization,1997,13(2/3):203—204. doi: 10.1007/BF01199243
    [5]
    Rozvany G I N.Partial relaxation of the orthogonality requirement for classical Michell trusses[J].Structural Optimization,1997,13(4):271—274. doi: 10.1007/BF01197457
    [6]
    Rozvany G I N.Generalized Michell structures-exact least-weight truss layouts for combined stress and displacement constraints: Part Ⅰ——General theory for plane trusses[J].Structural Optimization, 1995,9(3):178—188. doi: 10.1007/BF01743967
    [7]
    Rozvany G I N.Generalized Michell structures-exact least-weight truss layouts for combined stress and displacement constraints: Part Ⅱ——analytical solutions within a two-bar topology[J].Structural Optimization,1995,9(3):214—219. doi: 10.1007/BF01743973
    [8]
    Hemp W S.Optimal Structure[M].Oxford: Clarendon Press, 1973, 70—101.
    [9]
    Lewinski T, Zhou M, Rozvany G I N.Extended exact solutions for least-weight truss layouts—Paper Ⅰ: cantilever with a horizontal axis of symmetry[J].International Journal of Mechanical Sciences,1994,36(5):375—398. doi: 10.1016/0020-7403(94)90043-4
    [10]
    Lewinski T, Zhou M, Rozvany G I N.Extended exact solutions for least-weight truss layouts—Paper Ⅱ:unsymmetric cantilevers[J].International Journal of Mechanical Sciences,1994,36(5):399—419. doi: 10.1016/0020-7403(94)90044-2
    [11]
    CHENG Geng-dong,ZHENG Jiang.Study on topology optimization with stress constraints[J].Engineering Optimization,1992,20(2):129—148. doi: 10.1080/03052159208941276
    [12]
    Rozvany G I N, Bendse M P,Kirsch U.Layout Optimization of Structures[J].Applied Mechanics Reviews,1995,48(2):41—119. doi: 10.1115/1.3005097
    [13]
    Bendse M P, Kikuchi N.Generating optimal topologies in structural design using a homogenization method [J].Computer Methods in Applied Mechanics and Engineering,1988,71(2):197—224. doi: 10.1016/0045-7825(88)90086-2
    [14]
    SUI Yun-kang, YANG De-qing.A new method for structural topological optimization based on the concept of independent continuous variable and smooth model [J].Acta Mechanica Sinica,1998,18(2):179—185.
    [15]
    Xie Y M, Steven G P.A simple evolutionary procedure for structural optimization[J].Computers and Structures,1993,49(5):885—896. doi: 10.1016/0045-7949(93)90035-C
    [16]
    Guedes J M, Taylor J E.On the prediction of material properties and topology for optimal continuum structures[J].Structural Optimization,1997,14(3):193—199. doi: 10.1007/BF01812523
    [17]
    Taylor J E.An energy model for optimal design of linear continuum structures[J].Structural Optimization,1998,16(2/3):116—127.
    [18]
    Rodrigues H, Soto C, Taylor J E.A design model to predict optimal two-material composite structure[J].Structural Optimization,1999,17(2):186—198.
    [19]
    Hrnlein H R E M, Kocvara M, Werner R.Material optimization: bridging the gap between conceptual and preliminary design[J].Aerospace Science and Technology,2001,5(8):541—554. doi: 10.1016/S1270-9638(01)01125-7
    [20]
    Eschenauer H A, Olhoff N.Topology optimization of continuum structures: A review[J].Applied Mechanics Reviews,2001,54(4):331—389. doi: 10.1115/1.1388075
    [21]
    Rozvany G I N, Bendse M P, Kirsch U.Layout Optimization of structures[J].Applied Mechanics Reviews,1995,48(2):41—119. doi: 10.1115/1.3005097
    [22]
    周克民.利用有限元构造Michell桁架的一种方法[J].力学学报,2002,34(6):935—940.
    [23]
    Cox H L.The Design of Structures of Least Weight[M].Oxford: Pergamon Press,1965,80—114.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (3138) PDF downloads(972) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return