Hamdy M. Youssef. Dependence of the Modulus of Elasticity and the Thermal Conductivity on the Reference Temperature in Generalized Thermoelasticity for an Infinite Material With a Spherical Cavity[J]. Applied Mathematics and Mechanics, 2005, 26(4): 431-436.
Citation: Hamdy M. Youssef. Dependence of the Modulus of Elasticity and the Thermal Conductivity on the Reference Temperature in Generalized Thermoelasticity for an Infinite Material With a Spherical Cavity[J]. Applied Mathematics and Mechanics, 2005, 26(4): 431-436.

Dependence of the Modulus of Elasticity and the Thermal Conductivity on the Reference Temperature in Generalized Thermoelasticity for an Infinite Material With a Spherical Cavity

  • Received Date: 2003-07-28
  • Rev Recd Date: 2004-12-27
  • Publish Date: 2005-04-15
  • The equations of generalized thermoelasticity with one relaxation time with variable modulus of elasticity and the thermal conductivity were used to solve a problem of an infinite material with a spherical cavity.The inner surface of the cavity was taken to be traction free and acted upon by a thermal shock to the surface.Laplace transforms techniques were used to obtain the solution by a direct approach.The inverse Laplace tranforms was obtained numerically.The temperature,displacement and stress distributions are represented graphically.
  • loading
  • [1]
    Lord H,Shulman Y.A generalized dynamical theory of thermoelasticity[J].J Mech Phys Solids,1967,15(5):229—309. doi: 10.1016/0022-5096(67)90013-0
    [2]
    Sherief H,Dahaliwal R.A generalized one-dimensional thermal shock problem for short times[J].J Thermal Stresses,1981,4:407—420. doi: 10.1080/01495738108909976
    [3]
    Sherief H,Anwar M.Problem in generalized thermoelasticity[J].J Thermal Stresses,1986,9:165—182. doi: 10.1080/01495738608961895
    [4]
    Sherief H.Fundametal solution to the generalized thermoelastic problem for short times[J].J Thermal Stresses,1986,9:151—164. doi: 10.1080/01495738608961894
    [5]
    Noda N.Thermal Stresses in materials with temperature-dependent properties[A].In:Richard B Hetnarski Ed.Thermal Stresses[C].Vol 1.Amsterdam:North-Holland,1986,391—396.
    [6]
    Takeuti Y,Noda N.A three-dimensional treatment of transient thermal stresses in a circular cylinder due to an arbitrary heat supply[J].J Appl Mech,1978,45:817—821. doi: 10.1115/1.3424425
    [7]
    Nowacki W.Dynamic Problems of Thermoelasticity[M].Leyden:Noordhoff International Publishing,1975.
    [8]
    Ezzat M A,Othman M I,El-Karamany.The dependence of the modulus of elasticity on the reference temperature in generalized thermoelasticity[J].J Thermal Stresses,2001,24(12):1159—1176. doi: 10.1080/014957301753251737
    [9]
    Sherief Hany H,Anwar Mohamed N.A problem in generalized thermoelasticity for an infinitely long annular cylinder[J].Internat J Engrg Sci,1988,26(3):301—306. doi: 10.1016/0020-7225(88)90079-1
    [10]
    Hanig G,Hirdes U.A method for the numerical inversion of Laplace transform[J].J Comput Appl Math,1984,10(1):113—132. doi: 10.1016/0377-0427(84)90075-X
    [11]
    Chu H,Chen C,Weng C.Applications of Fourier series technique to transient heat transfer[J].Chem Eng Commun,1982,16:215—227. doi: 10.1080/00986448208911098
    [12]
    Hasselman D P H,Heller R A.Thermal Stresses in Severe Environments[M].Plenum,1980,61—80.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (2518) PDF downloads(526) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return