HE Yin-nian. Taylor Expansion Method for the Nonlinear Evolution Equations[J]. Applied Mathematics and Mechanics, 2005, 26(4): 481-488.
Citation: HE Yin-nian. Taylor Expansion Method for the Nonlinear Evolution Equations[J]. Applied Mathematics and Mechanics, 2005, 26(4): 481-488.

Taylor Expansion Method for the Nonlinear Evolution Equations

  • Received Date: 2003-12-30
  • Rev Recd Date: 2004-09-24
  • Publish Date: 2005-04-15
  • A new numerical method of integrating the nonlinear evolution equations,namely the Taylor expansion method,was presented.The standard Galerkin method can be viewed as the 0-th order Taylor expansion method;while the nonlinear Galerkin method can be viewed as the 1-st order modified Taylor expansion method.Moreover,the existence of the numerical solution and its convergence rate were proven.Finally,a concrete example,namely the two-dimensional Navier-Stokes equations with a non slip boundary condition,was provided.The result is that the higher order Taylor expansion method is of the higher convergence rate under some assumptions about the regularity of the solution.
  • loading
  • [1]
    Temam R.Infinite Dimensional Dynamical Systems in Mechanics and Physics[M].New York,Berlin,Heidelberg,London: Springer-Verlag,1988.
    [2]
    Foias C,Sell G R,Temam R.Inertial manifolds for the nonlinear evolutionary equations[J].J Differential Equations,1988,73(2):309—353. doi: 10.1016/0022-0396(88)90110-6
    [3]
    Ambrosetti A,Prodi G.A Primer of Nonlinear Analysis[M].Cambridge: Cambridge University Press, 1995.
    [4]
    陈铭俊,陈仲英.算子方程及其投影近似解[M].广州:广东科技出版社, 1992.
    [5]
    何银年,李开泰.非线性算子方程的Taylor展开方法[J].数学学报,1998,41(2):317—326.
    [6]
    LI Kai-tai,HUANG Ai-xiang,HE Yin-nian.Full discrete nonlinear Galerkin methods[A].In:YING Lun-gan,GUO Ben-yu Eds.Numerical Methods for Partial Differential Equations[C].Singapore: World Scientific, 1992, 61—82.
    [7]
    Marion M,Temam R.Nonlinear Galerkin methods[J].SIAM J Numer Anal, 1989,26(5):1139—1157. doi: 10.1137/0726063
    [8]
    Devulder C,Marion M,Titi E S.On the rate of convergence of nonlinear Galerkin methods[J].Math Comput,1993,60(202):495—514. doi: 10.1090/S0025-5718-1993-1160273-1
    [9]
    SHEN Jie.Long time stability and convergence for fully discrete nonlinear Galerkin methods[J].Appl Anal,1990,38(4):201—229. doi: 10.1080/00036819008839963
    [10]
    Heywood J G,Rannacher R.On the question of turbulence modeling by the approximate inertial manifolds and the nonlinear Galerkin method[J].SIAM J Numer Anal,1993,30(6):1603—1621. doi: 10.1137/0730083
    [11]
    Marion M,XU Jin-chao.Error estmates a new nonlinear Galerkin method based on two-grid finite elements[J].SIAM J Numer Anal,1995,32(4):1170—1184. doi: 10.1137/0732054
    [12]
    Temam R.Navier-Stokes Equations, Theory and Numerical Analysis[M].Amsterdam: North-Holland,1984.
    [13]
    Garcia-Archilla B,Novo J,Titi E S.An approximate inertial manifolds approach to postprocessing the Galerkin method for the Navier-Stokes equations[J].Math Comput,1999,68(227):893—911. doi: 10.1090/S0025-5718-99-01057-1
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (3161) PDF downloads(1172) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return