HE Yin-nian. Taylor Expansion Method for the Nonlinear Evolution Equations[J]. Applied Mathematics and Mechanics, 2005, 26(4): 481-488.
 Citation: HE Yin-nian. Taylor Expansion Method for the Nonlinear Evolution Equations[J]. Applied Mathematics and Mechanics, 2005, 26(4): 481-488.

# Taylor Expansion Method for the Nonlinear Evolution Equations

• Rev Recd Date: 2004-09-24
• Publish Date: 2005-04-15
• A new numerical method of integrating the nonlinear evolution equations,namely the Taylor expansion method,was presented.The standard Galerkin method can be viewed as the 0-th order Taylor expansion method;while the nonlinear Galerkin method can be viewed as the 1-st order modified Taylor expansion method.Moreover,the existence of the numerical solution and its convergence rate were proven.Finally,a concrete example,namely the two-dimensional Navier-Stokes equations with a non slip boundary condition,was provided.The result is that the higher order Taylor expansion method is of the higher convergence rate under some assumptions about the regularity of the solution.
•  [1] Temam R.Infinite Dimensional Dynamical Systems in Mechanics and Physics[M].New York,Berlin,Heidelberg,London: Springer-Verlag,1988. [2] Foias C,Sell G R,Temam R.Inertial manifolds for the nonlinear evolutionary equations[J].J Differential Equations,1988,73(2):309—353. [3] Ambrosetti A，Prodi G.A Primer of Nonlinear Analysis[M].Cambridge: Cambridge University Press, 1995. [4] 陈铭俊,陈仲英.算子方程及其投影近似解[M].广州:广东科技出版社, 1992. [5] 何银年,李开泰.非线性算子方程的Taylor展开方法[J].数学学报,1998,41(2):317—326. [6] LI Kai-tai,HUANG Ai-xiang,HE Yin-nian.Full discrete nonlinear Galerkin methods[A].In:YING Lun-gan,GUO Ben-yu Eds.Numerical Methods for Partial Differential Equations[C].Singapore: World Scientific, 1992, 61—82. [7] Marion M,Temam R.Nonlinear Galerkin methods[J].SIAM J Numer Anal, 1989,26(5):1139—1157. doi: 10.1137/0726063 [8] Devulder C,Marion M,Titi E S.On the rate of convergence of nonlinear Galerkin methods[J].Math Comput,1993,60(202):495—514. [9] SHEN Jie.Long time stability and convergence for fully discrete nonlinear Galerkin methods[J].Appl Anal,1990,38(4):201—229. [10] Heywood J G,Rannacher R.On the question of turbulence modeling by the approximate inertial manifolds and the nonlinear Galerkin method[J].SIAM J Numer Anal,1993,30(6):1603—1621. doi: 10.1137/0730083 [11] Marion M，XU Jin-chao.Error estmates a new nonlinear Galerkin method based on two-grid finite elements[J].SIAM J Numer Anal,1995,32(4):1170—1184. doi: 10.1137/0732054 [12] Temam R.Navier-Stokes Equations, Theory and Numerical Analysis[M].Amsterdam: North-Holland,1984. [13] Garcia-Archilla B,Novo J,Titi E S.An approximate inertial manifolds approach to postprocessing the Galerkin method for the Navier-Stokes equations[J].Math Comput,1999,68(227):893—911.

### Catalog

###### 通讯作者: 陈斌, bchen63@163.com
• 1.

沈阳化工大学材料科学与工程学院 沈阳 110142