WANG Hong-li, FENG Jian-feng, SHEN Fei, SUN Jing. Stability and Bifurcation Behaviors Analysis in a Nonlinear Harmful Algal Dynamical Model[J]. Applied Mathematics and Mechanics, 2005, 26(6): 671-676.
 Citation: WANG Hong-li, FENG Jian-feng, SHEN Fei, SUN Jing. Stability and Bifurcation Behaviors Analysis in a Nonlinear Harmful Algal Dynamical Model[J]. Applied Mathematics and Mechanics, 2005, 26(6): 671-676.

# Stability and Bifurcation Behaviors Analysis in a Nonlinear Harmful Algal Dynamical Model

• Rev Recd Date: 2005-01-25
• Publish Date: 2005-06-15
• A food chain made up of two typical algae and a zooplankton was considered.Based on ecological eutrophication,interaction of the algal and the prey of the zooplankton,a nutrient nonlinear dynamic system was constructed.Using the methods of the modern nonlinear dynamics,the bifurcation behaviors and stability of the model equations by changing the control parameter r were discussed.The value of r for bifurcation point was calculated,and the stability of the limit cycle was also discussed.The result shows that through quasi-periodicity bifurcation the system is lost in chaos.
•  [1] Glibert P,Pitcher G.Global Ecology and Oceanography of Harmful Algal Blooms, Science Plan[M].Baltimore and Paris：SCOR and IOC，2001，2—6. [2] 王洪礼，冯剑丰.渤海赤潮藻类生态动力学模型的非线性动力学研究[J].海洋技术，2002，21（3）：8—12. [3] Azar C,Holmberg J,Lindgren K.Stability analysis of harvesting in a predator-prey model[J].J Theoret Biol,1995,174(1):13—19. [4] Feigenbaum M J. Quantitative universality for a class of nonlinear transformations[J].J Statist Phys,1978,19(6):25—52. [5] 陈兰荪.数学生态学模型与研究方法[M].北京：科学出版社，1988. [6] Li T Y,Yorke J A.Period three implies chaos[J].Amer Math Monthly,1975,82(10)：985—992. doi: 10.2307/2318254

### Catalog

###### 通讯作者: 陈斌, bchen63@163.com
• 1.

沈阳化工大学材料科学与工程学院 沈阳 110142