ZHAO Yong-xiang, YANG Bing, LIANG Hong-qin, WU Ping-bo, ZENG Jing. New Method for Measuring the Random Thresholds of Long Fatigue Crack Propagation[J]. Applied Mathematics and Mechanics, 2005, 26(6): 701-706.
 Citation: ZHAO Yong-xiang, YANG Bing, LIANG Hong-qin, WU Ping-bo, ZENG Jing. New Method for Measuring the Random Thresholds of Long Fatigue Crack Propagation[J]. Applied Mathematics and Mechanics, 2005, 26(6): 701-706.

# New Method for Measuring the Random Thresholds of Long Fatigue Crack Propagation

• Rev Recd Date: 2005-02-21
• Publish Date: 2005-06-15
• A so-called "local probabilistic Paris relation method" was presented for measuring the random thresholds of long fatigue crack propagation.A check was made to the conventional method,in which the thresholds were measured statistically and directly by the test data.It was revealed that this method was not reasonable because the test data have seldom a unified level of crack growth rates.Differently,in the presented method the Paris-Erdogan equation was applied to model the local test data around the thresholds.Local probabilistic relations with both the survival probability and the confidence were established on a lognormal distribution of the stress density factors.And then,the probabilistic thresholds were derived from the probabilistic factors with a given critical level of growth rate.An analysis on the test data of LZ50 axle steel for the Chinese railway vehicles verifies that the present method is feasible and available.
•  [1] 王孔探,张文毓,秦广义.TA5钛合金的疲劳裂纹扩展门槛值与疲劳裂纹扩展率的关系[J].材料开发与应用,1995,10(3):8—12,19. [2] 徐人平,段小建,詹肇麟.理论门槛值的研究[J].强度与环境,1995,22(4):12—16. [3] 丁传富,于辉,吴学仁.LY12CZ铝合金的疲劳门槛值及宽范围裂纹扩展速率研究[J].航空材料学报,2000,20(1):12—17. [4] 熊峻江,彭俊华,高镇同.断裂韧性KⅠC和断裂门槛值ΔKth可靠性测定方法[J].北京航空航天大学学报,2000,26(6):694—696. [5] Clark T R, Herman W A, Hertzberg R W,et al.The influence of the K gradient and Kcmax level on fatigue response during the Kcmax threshold testing of Van 80 steel and Astroloy[J].Internat J Fatigue,1997,19(2):177—182. [6] McEvily A J, Renauld M, Bao H,et al. Fatigue fracture-surface roughness and the K-opening level[J].Internat J Fatigue,1997,19(8/9):629—633. [7] Wasén J, Heier E. Fatigue crack growth thresholds—the influence of Young's modulus and fracture surface roughness[J].Internat J Fatigue,1998,20(10):737—742. [8] Lang M. Explanation of an apparent abnormality in fatigue crack growth rate curves in Titanium alloys[J].Acta Mater,1999,47(11):3247—3261. [9] Sivaprasad S, Tarafder S, Tarafder M,et al. An alternative method of decreasing ΔK FCGR testing[J].Internat J Fatigue,2000,22(8):593—600. [10] Meshii T, Watanabe K. Comparison of near threshold fatigue crack growth data by Kmax-constant method with the post-construction codes[J].Nucl Eng Des,2003,220(2):285—292. [11] 赵永翔, 黄郁仲, 高庆. 铁道车辆LZ50车轴钢的概率机械性能[J].交通运输工程学报,2003,3(2):11—17. [12] 赵永翔, 王金诺, 高庆. 确定有限疲劳可靠性数据良好假设分布的一种统一方法[J].中国机械工程,2001,12(12):1343—1347. [13] Paris P, Erdogan F. A critical analysis of crack growth laws[J].J Basic Eng,1963,85(3):528—534. [14] 赵永翔,王金诺,高庆.概率循环应力-应变曲线及其估计方法[J].机械工程学报,2000,36(8):102—106.

### Catalog

###### 通讯作者: 陈斌, bchen63@163.com
• 1.

沈阳化工大学材料科学与工程学院 沈阳 110142

/