DING Xie-ping. System of Coincidence Theorems in Product Topological Spaces and Applications(Ⅰ)[J]. Applied Mathematics and Mechanics, 2005, 26(12): 1401-1408.
Citation: DING Xie-ping. System of Coincidence Theorems in Product Topological Spaces and Applications(Ⅰ)[J]. Applied Mathematics and Mechanics, 2005, 26(12): 1401-1408.

System of Coincidence Theorems in Product Topological Spaces and Applications(Ⅰ)

  • Received Date: 2004-10-10
  • Rev Recd Date: 2005-08-17
  • Publish Date: 2005-12-15
  • A new notion of finite continuous topological space (in short,FC-space) without convexity structure was introduced.A new continuous selection theorem was established in FC-spaces.By applying the continuous selection theorem,some new coincidence theorems for two families of set-valued mappings defined on product space of noncompact FC-spaces are proved under much weak assumptions.These results generalize many known results in recent literature.Some applications will be given in a follow-up paper.
  • loading
  • [1]
    von Neumann J.ber ein konomsiches Gleichungssystem und eine Verallgemeinering des Browerschen Fixpunktsatzes[J].Ergeb Math Kolloq,1937,8(1):73—83.
    [2]
    Browder F E.Coincidence theorems, minimax theorems,and variational inequalities[J].Contemp Math,1984,26:67—80. doi: 10.1090/conm/026/737389
    [3]
    DING Xie-ping.Coincidence theorems involving composites of acyclic mappings in contractible spaces[J].Appl Math Lett,1998,11(2):85—89.
    [4]
    DING Xie-ping.Coincidence theorems in topological spaces and their applications[J].Appl Math Lett,1999,12(7):99—105. doi: 10.1016/S0893-9659(99)00108-1
    [5]
    DING Xie-ping.Coincidence theorems and generalized equilibrium in topological spaces[J].Indian J Pure Appl Math,1999,30(10):1053—1062.
    [6]
    DING Xie-ping.Coincidence theorems involving composites of acyclic mappings and applications[J].Acta Math Sci,1999,19(1):53—61.
    [7]
    DING Xie-ping.Coincidence theorems with applications to minimax inequalities, section theorem and best approximation in topological spaces[J].Nonlinear Studies,2000,7(2):211—225.
    [8]
    DING Xie-ping,Park J Y.Continuous selection theorem,coincidence theorem,and generalized equilibrium in L-convex spaces[J].Comput Math Appl,2002,44(1/2):95—103. doi: 10.1016/S0898-1221(02)00132-3
    [9]
    Deguire P, Lassonde M.Familles sélectantes[J].Topol Methods Nonlinear Anal,1995,5(2):261—296.
    [10]
    Deguire P,Tan K K,Yuan G X Z. The study of maximal elements,fixed point for LS--majorijed mappings and their applications to minimax and variational inequalities in product topological spaces[J].Nonlinear Anal,1999,37(7):933—951. doi: 10.1016/S0362-546X(98)00084-4
    [11]
    丁协平.乘积G-凸空间内的GB-优化映象的极大元及其应用(Ⅱ)[J].应用数学和力学,2003,24(9):899—905.
    [12]
    Ansari Q H,Idzik A,YAO J C.Coincidence and fixed points with applications[J]. Topol Methods Nonlinear Anal,2000,15(1):191—202.
    [13]
    Yu Z T,Lin L J.Continuous selection and fixed point theorems[J].Nonlinear Anal,2003,52(2):445—455. doi: 10.1016/S0362-546X(02)00107-4
    [14]
    Lin L J.System of coincidence theorems with applications[J].J Math Anal Appl,2003,285(2):408—418. doi: 10.1016/S0022-247X(03)00406-2
    [15]
    DING Xie-ping.Coincidence theorems for two families of set-valued mappings on product G-convex spaces[J].J Sichuan Normal Univ,2004,27(2):111—114.
    [16]
    DING Xie-ping.New H-KKM theorems and their applications to geometric property, coincidence theorems, minimax inequality and maximal elements[J]. Indian J Pure Appl Math,1995,26(1):1—19.
    [17]
    Park S.Continuous selection theorems in generalized convex spaces[J].Numer Funct Anal Optim,1999,20(5/6):567—583. doi: 10.1080/01630569908816911
    [18]
    Horvath C D.Some results on multivalued mappings and inequalities without convexity[A].In:Lin B L,Simons S Eds.Nonlinear and Convex Analysis[C].New York:Marcel Dekker,1987,99—106.
    [19]
    Horvath C D.Contractibility and general convexity[J].J Math Anal Appl,1991,156(2):341—357. doi: 10.1016/0022-247X(91)90402-L
    [20]
    Park S,Kim H.Coincidence theorems for admissible multifunctions on generalized convex spaces[J].J Math Anal Appl,1996,197(1):173—187. doi: 10.1006/jmaa.1996.0014
    [21]
    Park S,Kim H.Foundations of the KKM theory on generalized convex spaces[J].J Math Anal Appl,1997,209(2):551—571. doi: 10.1006/jmaa.1997.5388
    [22]
    Tan K K,Zhang X L.Fixed point theorems on G-convex spaces and applications[J].Nonlinear Funct Anal Appl,1996,1(1):1—19.
    [23]
    Tarafdar E.Fixed point theorems in H-spaces and equilibrium points of abstract economies[J].J Austral Math Soc,Ser A,1992,53(1):252—260. doi: 10.1017/S1446788700035825
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (2838) PDF downloads(917) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return