GAO Suo-wen, WANG Yue-sheng. ZHANG Zi-mao, MA Xing-rui, . Dual Reciprocity Boundary Element Method for Flexural Waves in Thin Plate With Cutout[J]. Applied Mathematics and Mechanics, 2005, 26(12): 1417-1424.
Citation: GAO Suo-wen, WANG Yue-sheng. ZHANG Zi-mao, MA Xing-rui, . Dual Reciprocity Boundary Element Method for Flexural Waves in Thin Plate With Cutout[J]. Applied Mathematics and Mechanics, 2005, 26(12): 1417-1424.

Dual Reciprocity Boundary Element Method for Flexural Waves in Thin Plate With Cutout

  • Received Date: 2004-06-25
  • Rev Recd Date: 2005-09-01
  • Publish Date: 2005-12-15
  • The theoretical analysis and numerical calculation of scattering of elastic waves and dynamic stress concentrations in the thin plate with the cutout was studied usingdual reciprocity boundary element method (DRM).Based on the work equivalent law,the dual reciprocity boundary integral equations for flexural waves in the thin plate were established using static fundamental solution.As illustration,numerical results for the dynamic stress concentration factors in the thin plate with a circular hole are given.The results obtained demonstrate good agreement with other reported results and show high accuracy.
  • loading
  • [1]
    王铎,马兴瑞,刘殿魁. 弹性动力学最新进展[M].北京:科学出版社,1995,1—106.
    [2]
    Pao Y H.Dynamical stress concentration in an elastic plate[J].J Appl Mech,1962,29(2):299—305. doi: 10.1115/1.3640545
    [3]
    LIU Dian-kui,GAI Bing-zheng,TAO Gui-guan.Application of the method of complex functions to dynamic stress concentrations[J].Wave Motion,1982,4(3):293—304. doi: 10.1016/0165-2125(82)90025-7
    [4]
    Partridge P W,Brebbia C A,Wrobel L C.Dual Reciprocity Boundary Element Method[M].Southampton Boston: Comput Mech Pub,1992,1—176.
    [5]
    Nardini D,Brebbia C A.A new approach to free vibration analysis using boundary elements[A].In:Brebbia C A Ed.Boundary Elements Methods in Engineering[C].Berlin:Springer-Verlag,1982,312—326.
    [6]
    Kogl M,Gaul L.Free vibration analysis of anisotropic solids with the boundary element method[J].Engineering Analysis With Boundary Elements,2003,27(2):107—114. doi: 10.1016/S0955-7997(02)00088-7
    [7]
    Rodriguez J J,Power H.H-adaptive mesh refinement strategy for the boundary element method based on local error analysis[J].Engineering Analysis With Boundary Elements,2001,25(7):565—579. doi: 10.1016/S0955-7997(01)00014-5
    [8]
    Rodriguez J J,Power H.An adaptive dual reciprocity scheme for the numerical solution of the Poisson equation[J].Engineering Analysis With Boundary Elements,2002,26(4):283—300. doi: 10.1016/S0955-7997(02)00003-6
    [9]
    Chien C C,Chen Y H,Chuang C C.Dual reciprocity BEM analysis of 2D transient elastodynamic problems by time-discontinuous Galerkin FEM[J].Engineering Analysis With Boundary Elements,2003,27(6):611—624. doi: 10.1016/S0955-7997(02)00150-9
    [10]
    Itagaki M. Advanced dual reciprocity method based on polynomial source and its application to eigenvalue problem for nonuniform media[J].Engineering Analysis With Boundary Elements,2000,24(2):169—176. doi: 10.1016/S0955-7997(99)00052-1
    [11]
    Chen J T,Kuo S R,Chung I L,et al.Study on the true and spurious eigensolutions of two-dimensional cavities using the dual multiple reciprocity method[J].Engineering Analysis With Boundary Elements,2003,27(7):655—670. doi: 10.1016/S0955-7997(03)00019-5
    [12]
    Singh K M,Tanaka M.Dual reciprocity boundary element analysis of inverse heat conduction problems[J].Comput Methods Appl Mech Engrg,2001,190(40/41):5283—5295. doi: 10.1016/S0045-7825(01)00161-X
    [13]
    Albuquerque E L,Sollero P,Aliabadi M H.The boundary element method applied to time dependent problems in anisotropic materials[J].Internat J Solids and Structres,2002,39(5):1405—1422. doi: 10.1016/S0020-7683(01)00173-1
    [14]
    Albuquerque E L,Sollero P,Fedelinski P. Dual reciprocity boundary element method in Laplace domain applied to anisotropic dynamic crack problems[J].Computers and Structures,2003,81(17):1703—1713. doi: 10.1016/S0045-7949(03)00184-6
    [15]
    Chen W,Hon Y C.Numerical investigation on convergence of boundary knot method in the analysis of homogeneous Helmholtz, modified Helmholtz, and convection-diffusion problems[J].Comput Methods Appl Mech Engrg,2003,192(15):1859—1875. doi: 10.1016/S0045-7825(03)00216-0
    [16]
    高锁文,王本利,马兴瑞. 开孔薄板弹性波散射与动应力集中[J].工程力学,2001,23(2):14—20.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (3034) PDF downloads(475) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return