TANG Qiong, CHEN Chuan-miao, LIU Luo-hua. Space-Time Finite Element Method for the Schrodinger Equation and Its Conservation[J]. Applied Mathematics and Mechanics, 2006, 27(3): 300-304.
 Citation: TANG Qiong, CHEN Chuan-miao, LIU Luo-hua. Space-Time Finite Element Method for the Schrodinger Equation and Its Conservation[J]. Applied Mathematics and Mechanics, 2006, 27(3): 300-304.

# Space-Time Finite Element Method for the Schrodinger Equation and Its Conservation

• Rev Recd Date: 2005-11-18
• Publish Date: 2006-03-15
• Energy conservation of non-linear Schrêdinger ordinary differential equation was proved through using ordinary differential equation's continuous finite element methods;Energy integration conservation was proved through using space-time all continuous fully discrete finite element methods and electron nearly conservation with higher order error through using time discontinuous only space continuos finite element methods of non-linear Schrêdinger partial equation.The numerical results are in accordance with the theory.
•  [1] Delfour M,Fortin M,Payre G. Finite-difference solution of a non-linear Schrdinger equation[J].Journal of Computational Physics,1981,44(12):277—288. [2] Qhannes Karakashian,Charalambos Makridakis.A space-time finite element method for The nonlinear Schrdinger equation:the discontiouous Galerkin method[J].Mathematics of Computation,1998,67(1):479—499. [3] 李宏,刘儒勋.抛物方程的时空有限元方法[J].应用数学和力学,2001，22(6):613—624. [4] 张鲁明,常谦顺.非线性Schrdinger方程的守恒数值格式[J].计算物理，1999,16(6):661—668. [5] 陈传淼.有限元超收敛构造理论[M].长沙:湖南科技出版社,2001,241—285. [6] 汤琼,陈传淼,刘罗华.常微分初值问题的间断有限元的超收敛性[J].株洲工学院学报,2004，18(2):30—32.

### Catalog

###### 通讯作者: 陈斌, bchen63@163.com
• 1.

沈阳化工大学材料科学与工程学院 沈阳 110142