LI Shu, WANG Bo, HU Ji-zhong. Homotopy Solution of the Inverse Generalized Eigenvalue Problems in Structural Dynamics[J]. Applied Mathematics and Mechanics, 2004, 25(5): 529-534.
Citation: LI Shu, WANG Bo, HU Ji-zhong. Homotopy Solution of the Inverse Generalized Eigenvalue Problems in Structural Dynamics[J]. Applied Mathematics and Mechanics, 2004, 25(5): 529-534.

Homotopy Solution of the Inverse Generalized Eigenvalue Problems in Structural Dynamics

  • Received Date: 2002-05-17
  • Rev Recd Date: 2003-11-17
  • Publish Date: 2004-05-15
  • The structural dynamics problems, such as structural design, parameter identification and model correction, are considered as a kind of the inverse generalized eigenvalue problems mathematically. The inverse eigenvalue problems are nonlinear. In general, they could be transformed into nonlinear equations to solve. The structural dynamics inverse problems were treated as quasi multiplicative inverse eigenalue problems which were solved by homotopy method for nonlinear equations. This method had no requirements for initial value essentially because of the homotopy path to solution. Numerical examples were presented to illustrate the homotopy method.
  • loading
  • [1]
    李书,冯太华,范绪箕.动力模型修正中逆特征值问题的数值解法[J].计算结构动力学及其应用,1995,12(3):276—280.
    [2]
    李书,卓家寿,任青文.对称结构动力设计中的广义逆特征值问题[J].计算力学学报,1999,16(2):138—142.
    [3]
    李书,卓家寿,任青文.动力模型参数识别中的Bayes方法[J].应用数学和力学,2000,21(4):402—408.
    [4]
    Joseph K T.Inverse eigenvalue problom for structural design[J].AIAA J,1992,30(12):2891—2896.
    [5]
    曾庆华,张令弥.一种设计参数型的有限元模型修正方法[J].航空学报,1992,13(1):A29—A35.
    [6]
    Friedland S,Nocedal J,Overton M L.The formulation and analysis numerical methods for inverse eigenvalue problem[J].SIAM J Numer Anal,1987,24(3):634—667. doi: 10.1137/0724043
    [7]
    Allgower E,Georg K.Simplicial and continuation methods for approximating fixed points and solutions to systems of equations[J].SIAM Review,1980,(22):28—85.
    [8]
    Chu M T.Solving addition inverse eigenvalue problems by homotopy method[J].IMA J Numer Anal,1990,(9):331—342.
    [9]
    徐树方.求解特征值反问题的同伦方法[J].计算数学,1993,15(2):200—206.
    [10]
    戴华.矩阵特征值反问题的若干进展[J].南京航空航天大学学报,1995,27(3):400—413.
    [11]
    周树荃,戴华.代数特征值反问题[M].郑州:河南科学技术出版社,1991.
    [12]
    Aruch M.Optimal correction of mass and stiffness matrices using measured modes[J].AIAA J,1982,20(11):1623—1626. doi: 10.2514/3.7995
    [13]
    Aily R L.Eigenvector derivatives with repeated eigenvalues[J].AIAA J,1989,27(4):486—491. doi: 10.2514/3.10137
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (3307) PDF downloads(719) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return