Citation: | TU Guo-hua, YUAN Xiang-jiang, XIA Zhi-qiang, HU Zhen. A Class of Compact Upwind TVD Difference Schemes[J]. Applied Mathematics and Mechanics, 2006, 27(6): 675-682. |
[1] |
Lele S K. Compact finite difference schemes with spectral-like resolution[J].Journal of Computational Physics,1992,103(1):16—42. doi: 10.1016/0021-9991(92)90324-R
|
[2] |
Ravichandran K S. Higher order KFVS algorithms using compact upwind difference operators[J].Journal of Computational Physics,1997,230(2):161—173.
|
[3] |
Tadmor E. Convenient total variation diminishing conditions for nonlinear difference schemes[J].SIAM Journal on Numerical Analysis,1988,25(5):1002—1014. doi: 10.1137/0725057
|
[4] |
Osher S. Riemann solvers, the entropy condition and difference approximations[J].SIAM Journal on Numerical Analysis,1984,21(2):217—238. doi: 10.1137/0721016
|
[5] |
涂国华,袁湘江,陈陆军.适用于超声速的一种通量限制型紧致格式[J]. 航空学报,2004,25(4):327—332.
|
[6] |
Pirozzoli S. Conservative hybrid compact-WENO schemes for shock-turbulence interaction[J].Journal of Computational Physics,2002,178(1):81—117. doi: 10.1006/jcph.2002.7021
|
[7] |
Jiang G-S, Shu C-W. Efficient implementation of weighted ENO schemes[J].Journal of Computational Physics,1996,126(1):202—228. doi: 10.1006/jcph.1996.0130
|