ZHOU Ping, WU Cheng-wei, MA Guo-jun. Squeeze Film Flow With Nonlinear Boundary Slip[J]. Applied Mathematics and Mechanics, 2006, 27(9): 1129-1134.
Citation: ZHOU Ping, WU Cheng-wei, MA Guo-jun. Squeeze Film Flow With Nonlinear Boundary Slip[J]. Applied Mathematics and Mechanics, 2006, 27(9): 1129-1134.

Squeeze Film Flow With Nonlinear Boundary Slip

  • Received Date: 2005-06-25
  • Rev Recd Date: 2006-06-02
  • Publish Date: 2006-09-15
  • A nonlinear boundary slip model consisting of an initial slip length and a critical shear rate was used to study the nonlinear boundary slip of squeeze fluid film confined between two approaching spheres. It is found that the initial slip length controls the slip behavior at small shear rate, but the critical shear rate controls the boundary slip at high shear rate. The boundary slip at the squeeze fluid film of spherical surfaces is a strongly nonlinear function of the radius coordinate. At the center or far from the center of the squeeze film, the slip length equals the initial slip length due to the small shear rate. However, in the high shear rate regime the slip length increases very much. The hydrodynamic force of the spherical squeeze film decreases with increasing the initial slip length and decreasing the critical shear rate. The effect of initial slip length on the hydrodynamic force seems less than that of the critical shear rate. When the critical shear rate is very small the hydrodynamic force increases very slowly with a decrease in the minimum film thickness. The theoretical predictions agree well with the experiment measurements.
  • loading
  • [1]
    Lamb H.Hydrodynamics[M].New York:Dove,1932.
    [2]
    Faber T.Fluid Dynamics for Physicists[M].Cambridge:Cambridge University Press,1995.
    [3]
    Schnell E.Slippage of water over nonwettable surfaces[J].J Appl Phys,1956,27(10):1149—1152. doi: 10.1063/1.1722220
    [4]
    Pit R,Hervet H,Leger L.Friction and slip of a simple liquid at solid surface[J].Tribol Lett,1999,7(2/3):147—152. doi: 10.1023/A:1019161101812
    [5]
    Pit R,Hervet H,Leger L.Direct experimental evidence of slip in hexadecane:solid interfaces[J].Phys Rev Lett,2000,85(5):980—983. doi: 10.1103/PhysRevLett.85.980
    [6]
    Bonaccurso E, Kappl M,Butt H J.Hydrodynamic force measurements: boundary slip of hydrophilic surfaces and electrokinetic effects[J].Phys Rev Lett,2002,88(7):076103. doi: 10.1103/PhysRevLett.88.076103
    [7]
    Craig V S J,Neto C,Williams D R M.Shear-dependent boundary slip in an aqueous Newtonian liquid[J].Phys Rev Lett,2001,87(5):054504. doi: 10.1103/PhysRevLett.87.054504
    [8]
    Bonaccurso E,Butt H J, Craig V S J. Surface roughness and hydrodynamic boundary slip of a Newtonian fluid in a completely wetting system[J].Phys Rev Lett,2002,90(14):144501.
    [9]
    Zhu Y,Granick S.Rate-dependent slip of Newtonian liquid at smooth surfaces[J].Phys Rev Lett,2001,87(9):096105. doi: 10.1103/PhysRevLett.87.096105
    [10]
    Zhu Y, Granick S. Limits of the hydrodynamic no-slip boundary condition[J].Phys Rev Lett,2002,88(10):106102. doi: 10.1103/PhysRevLett.88.106102
    [11]
    Hervet H, Leger L.Flow with slip at the wall: from simple to complex liquids[J].L C R Physique,2003,4(2):241—249. doi: 10.1016/S1631-0705(03)00047-1
    [12]
    Sun M,Edner C.Molecular dynamics study of flow at a fluid-wall interface [J].Phys Rev Lett,1992,69(24):3491—3494. doi: 10.1103/PhysRevLett.69.3491
    [13]
    Thompson P A,Troian S M.A general boundary condition for liquid flow at solid surfaces[J].Nature,1997,389(6649):360—362. doi: 10.1038/38686
    [14]
    Maxwell J C.On stresses in rarified gases arising from inequalities of temperature[J].Philos Trans Roy Soc London,1879,170(3):231—256. doi: 10.1098/rstl.1879.0067
    [15]
    White F M.Viscous Fluid Flow[M].New York:McGraw-Hill Book Company,1974.
    [16]
    Bair S, Winer W O.Shear strength measurements of lubricants at high pressure[J].ASME J Lub Tech,1979,101(3):251—256. doi: 10.1115/1.3453339
    [17]
    Bair S, Winer W O.The shear stress rheology of liquid lubricants at pressure of 2 to 200 Mpa[J].ASME J Tribology,1990,112(2):246—252. doi: 10.1115/1.2920248
    [18]
    WU Cheng-wei,ZHONG Wan-xie,Qian L X,et al.Parametric variational principle for viscoplastic lubrication model[J].ASME J Tribology,1992,113(4):731—735.
    [19]
    Stahl J,Jacobson B O.A lubricant model considering wall-slip in EHL line contacts[J].ASME J Tribology,2003,125(3):523—532. doi: 10.1115/1.1537750
    [20]
    Priezjev N V,Troian S M.Molecular origin and dynamic behavior of slip in sheared polymer films[J].Phys Rev Lett,2004,92(1):018302. doi: 10.1103/PhysRevLett.92.018302
    [21]
    Vinogradova O I.Drainage of a thin liquid film confined between hydrophobic surfaces[J].Langmuir,1995,11(6):2213—2220. doi: 10.1021/la00006a059
    [22]
    WU Cheng-Wei,MA Guo-jun. On the boundary slip of fluid flow[J].Science in China,Series G,2005,48(2):178—187. doi: 10.1360/03yw0304
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (2137) PDF downloads(624) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return