DENG Lei, YANG Ming-ge. Weakly R-KKM Mappings—Intersection Theorems and Minimax Inequalities in Topological Spaces[J]. Applied Mathematics and Mechanics, 2007, 28(1): 92-98.
Citation: DENG Lei, YANG Ming-ge. Weakly R-KKM Mappings—Intersection Theorems and Minimax Inequalities in Topological Spaces[J]. Applied Mathematics and Mechanics, 2007, 28(1): 92-98.

Weakly R-KKM Mappings—Intersection Theorems and Minimax Inequalities in Topological Spaces

  • Received Date: 2005-10-09
  • Rev Recd Date: 2006-10-31
  • Publish Date: 2007-01-15
  • The concepts of weakly R-KKM mappings, R-convex and R-β-quasiconvex in general topological spaces without any convex structure are introduced. Relating to these, an extension to general topological spaces of Fan's matching theorem is obtained, namely Lemma 1.2. On this basis, two intersection theorems are proved in topological spaces. By using intersection theorems, some minimax inequalities of Ky Fan type are also proved in topological spaces. The results generalize and improve the corresponding results in the literature.
  • loading
  • [1]
    Knaster B, Kuratowski C,Mazurkiewicz S.EinBeweis des fixpunktsatzes fur n-dimensionale simplexe[J].Fund Math,1929,14(1):132-137.
    [2]
    Fan K.A generalization of Tychonoff's fixed point theorem[J].Math Ann,1961,142(3):305-310. doi: 10.1007/BF01353421
    [3]
    Park S.Generalizations of Ky Fan's matching theorems and their applications[J].J Math Anal Appl,1989,141(1):164-176. doi: 10.1016/0022-247X(89)90213-8
    [4]
    Chang T H,Yen C L. KKM property and fixed point theorems[J].J Math Anal Appl,1996,203(1):224-235. doi: 10.1006/jmaa.1996.0376
    [5]
    Lin L J, Ko C J, Park S. Coincidence theorems for set-valued mapps with G-KKM property on generalized convex space[J].Discuss Math Differential Incl,1998,18(1):69-85.
    [6]
    Balaj M.Weakly G-KKM mappings, G-KKM property, and minimax inequalities[J].J Math Anal Appl,2004,294(1):237-245. doi: 10.1016/j.jmaa.2004.02.013
    [7]
    Deng L, Xia X. Generalized R-KKM theorems in topological spaces and their applicatons[J].J Math Anal Appl,2003,285(2):679-690. doi: 10.1016/S0022-247X(03)00466-9
    [8]
    Park S, Kim H. Admissible classes of multifunctions on generalized convex spaces[J].Proc Coll Natur Sci Seoul National University,1993,18(1):1-21.
    [9]
    Shih M H. Covering properties of convex sets[J].Bull London Math Soc,1986,18(1):57-59. doi: 10.1112/blms/18.1.57
    [10]
    Park S, Kim H. Foundations of the KKM theory on generalized convex spaces[J].J Math Anal Appl,1997,209(2):551-571. doi: 10.1006/jmaa.1997.5388
    [11]
    Park S. Fixed point theorems in locally G-convex spaces[J].Nonlinear Anal,2002,48(6):869-879. doi: 10.1016/S0362-546X(00)00220-0
    [12]
    Aubin J P, Ekeland I.Applied Nonlinear Analysis[M].New York:Wiley,1984.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (2627) PDF downloads(639) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return