YIN Fu-qi, ZHOU Sheng-fan, YIN Chang-ming, XIAO Cui-hui. Global Attractor for KGS Lattice System[J]. Applied Mathematics and Mechanics, 2007, 28(5): 619-630.
Citation: YIN Fu-qi, ZHOU Sheng-fan, YIN Chang-ming, XIAO Cui-hui. Global Attractor for KGS Lattice System[J]. Applied Mathematics and Mechanics, 2007, 28(5): 619-630.

Global Attractor for KGS Lattice System

  • Received Date: 2006-06-27
  • Rev Recd Date: 2007-03-09
  • Publish Date: 2007-05-15
  • The longtime behavior of solutions of a coupled lattice dynamical system of Klein-Gordon Schrêdinger equation (KGS lattice system) was considered.The existence of a global attractor for the system is proved here by introducing an equivalent norm and using "End Tails" of solutions.Then the upper bound of the Kolmogorov D-entropy of the global attractor is estimated by applying element decomposition and the covering property of a polyhedron by balls of radii D in the finite dimensional space.Finally,an approximation to the global attractor is presented by the global attractors of finitedimensional ordinary differential systems.
  • loading
  • [1]
    Chow S N,Mallet-Parat J,Shen W.Traveling waves in lattice dynamical systems[J].J Diff Equa,1998,149(2):248-291. doi: 10.1006/jdeq.1998.3478
    [2]
    Shen W.Lifted lattices, hyperbolic structures, and topological disorders in coupled map lattices[J].SIAM J Appl Math,1996,56(5):1379-1399. doi: 10.1137/S0036139995282670
    [3]
    Yu J, Collective behavior of coupled map lattices with asymmetrical coupling[J].Phys Lett A,1998,240(1/2):60-64.
    [4]
    Bates P W,Lu K,Wang B,Attractors for lattice dynamical systems[J].Int J Bifurcations and Chaos,2001,11(1):143-152.
    [5]
    ZHOU Sheng-fan.Attractor for second order lattice dynamical system[J].J Diff Equa,2002,179(2):605-624. doi: 10.1006/jdeq.2001.4032
    [6]
    Babin A V,Vishik M I.Attractors of Evolutionary Equations[M].Nauka, Moscow 1989; English transl stud Math Appl,Vol 25.Amsterdam:North Holland,1992.
    [7]
    GUO Bo-lin,LI Yong-sheng, Attractors for Klein-Gordon-Schrdinger Equation in R3[J].J Diff Equa,1997,136(1):356-377.
    [8]
    Lu K, Wang B,Attractor for Klein-Gordon-Schrdinger equation in unbounded domains[J].J Diff Equa,2001,170(1):281-316.
    [9]
    Chepyzhov, V V, Vishik M I.Kolmogorov's ε-entropy for the attractor of reaction-diffusion equation[J].Math Sbornik,1998,189(2):81-110. doi: 10.4213/sm301
    [10]
    ZHOU Sheng-fan.On dimension of the global attractor for damped nonlinear wave equation[J].J Math Phys,1999,40(3):1432-1438. doi: 10.1063/1.532813
    [11]
    Hale J K.Asymptotic Behavior of Dissipative Systems[M].Rhode Island:Amer Math Soc providence,1988.
    [12]
    Temam R.Infinite-Dimensional Dynamical Systems in Mechanics and Physics[M].Appl Math Sci[STHZ]. 68[STBZ]. New York:Springer-Verlag,1988.
    [13]
    Hayashi N, Von Wahl W.On the global strong solutions of coupled Klein-Gordon-Schrdinger equations[J].J Math Soc Japan,1987,39(2):489-497.[JP3]. Lorentz G, GolitschekM, Makovoz Y.Constructive Approximation. Advanced Problem. Grundlehrender Mathematischen Wissenschaften[M].([Functional Principles of Mathematical Sciences]. Vol 304).Berlin:Springer-Verlag,1996. doi: 10.2969/jmsj/03930489
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (2868) PDF downloads(868) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return