| Citation: | GENG Di. Infinitely Many Solutions of p-Laplacian Equations With Limit Sub-Critical Growth[J]. Applied Mathematics and Mechanics, 2007, 28(10): 1223-1231. | 
 
	                | [1] | 刘轼波,李树杰.一类超线性椭圆方程的无穷多解[J].数学学报,2003,46(4):625-630. | 
| [2] | Garcia Azorero J P,Peral Alonso I.Multiplicity of solutions for elliptic problems with critical exponent or with a nonsymmetric term[J].Trans Amer Math Soc,1991,323(2):877-895. | 
| [3] | 冉启康,方爱农.RN上临界增长的椭圆方程无穷多解的存在性[J].数学学报,2002,45(4):773-782. | 
| [4] | Struwe M.Variational Methods[M].Beijing:Spriger-Verlag,1996. | 
| [5] | Lion P L.The concentration-compactness principle in the calculus of Variation, the limit case[J].part 1,2.Rev Mat Iberoamericana,1985,1(1):145-201;1(2):45-121. | 
| [6] | 耿堤,杨舟.临界增长拟线性椭圆型方程中p-Laplace算子的弱连续性[J].华南师范大学学报, 2003,(3):10-13. | 
| [7] | Costa D G,Miyagaki O H.Nontrivial solutions for perturbations of the p-Laplacian on unbounded domains[J].J Math Anal Appl,1995,193(2):737-755. doi:  10.1006/jmaa.1995.1264 | 
| [8] | Brézis H,Nirenberg L.Remarks on finding critical points[J].Comm Pure Appl Math,1991,49(5):939-963. | 
| [9] | Triebel H.Interpolation Theory, Function Spaces, Differential Operators[M].Amsterdam:North-Holland Pub Co,1978. | 
| [10] | Suzuki T.Generalized distance and existence theorems in complete metric spaces[J].J Math Anal Applic,2001,253(2):440-458. doi:  10.1006/jmaa.2000.7151 | 
