Citation: | GENG Di. Infinitely Many Solutions of p-Laplacian Equations With Limit Sub-Critical Growth[J]. Applied Mathematics and Mechanics, 2007, 28(10): 1223-1231. |
[1] |
刘轼波,李树杰.一类超线性椭圆方程的无穷多解[J].数学学报,2003,46(4):625-630.
|
[2] |
Garcia Azorero J P,Peral Alonso I.Multiplicity of solutions for elliptic problems with critical exponent or with a nonsymmetric term[J].Trans Amer Math Soc,1991,323(2):877-895.
|
[3] |
冉启康,方爱农.RN上临界增长的椭圆方程无穷多解的存在性[J].数学学报,2002,45(4):773-782.
|
[4] |
Struwe M.Variational Methods[M].Beijing:Spriger-Verlag,1996.
|
[5] |
Lion P L.The concentration-compactness principle in the calculus of Variation, the limit case[J].part 1,2.Rev Mat Iberoamericana,1985,1(1):145-201;1(2):45-121.
|
[6] |
耿堤,杨舟.临界增长拟线性椭圆型方程中p-Laplace算子的弱连续性[J].华南师范大学学报, 2003,(3):10-13.
|
[7] |
Costa D G,Miyagaki O H.Nontrivial solutions for perturbations of the p-Laplacian on unbounded domains[J].J Math Anal Appl,1995,193(2):737-755. doi: 10.1006/jmaa.1995.1264
|
[8] |
Brézis H,Nirenberg L.Remarks on finding critical points[J].Comm Pure Appl Math,1991,49(5):939-963.
|
[9] |
Triebel H.Interpolation Theory, Function Spaces, Differential Operators[M].Amsterdam:North-Holland Pub Co,1978.
|
[10] |
Suzuki T.Generalized distance and existence theorems in complete metric spaces[J].J Math Anal Applic,2001,253(2):440-458. doi: 10.1006/jmaa.2000.7151
|