Citation: | ZHU Zhi-bin, LUO Zhi-jun, ZENG Ji-wen. A New Smoothing Technique for Mathematical Programs With Equilibrium Constraints[J]. Applied Mathematics and Mechanics, 2007, 28(10): 1253-1260. |
[1] |
Outrata J, Zowe J.A numerical approach to optimization problems with variational inequality constraints[J].Mathematical Programming,1995,68(1):105-130.
|
[2] |
Luo Z Q,Pang J S,Ralph D,et al.Exact penalization and stationarity conditions of mathematical programs with equilibrium constraints[J].Mathematical Programming,1996,75(1):19-76.
|
[3] |
Outrata J, Kocvare M,Zowe J.Nonsmooth Approach to Optimization Problems With Equilibrium Consraints[M].Netherlands: Kluwer Academic Publishers, 1998.
|
[4] |
Facchinei F, Jiang H Y,Qi L.A smoothing method for mathematical programs with equilibjum constraints[J].Mathematical Programming,1999,85(1):107-134. doi: 10.1007/s101070050048
|
[5] |
李飞,徐成贤.求解带均衡约束数学规划问题的一个连续化方法[J].计算数学,2004,26(1):3-12.
|
[6] |
Fukushima M, Luo Z Q,Pang J S.A globally convergent sequential quadratic programming algorithm for mathematical programs with linear complementarity constraints[J].Computational Optimization and Applications,1998,10(1):5-34. doi: 10.1023/A:1018359900133
|
[7] |
Qi L, Chen X J. A globally convergent successive approximation methods for non-smooth equation[J].SIAM Journal on Control and Optimization,1995,33(3):402-418. doi: 10.1137/S036301299223619X
|
[8] |
Ma C F,Liang G P.A new successive approximation damped Newton method for nonlinear complementarity problems[J].Journal of Mathematical Research and Exposition,2003,23(1):1-6.
|
[9] |
Luo Z Q, Pang J S, Ralph D.Mathematical Programs With Equilibrium Constraints[M].Cambridge:Cambridge University Press,1996.
|