ZHANG Tian-si, ZHU De-ming. Bifurcations of Double Homoclinic Flip Orbits With Resonant Eigenvalues[J]. Applied Mathematics and Mechanics, 2007, 28(11): 1353-1362.
 Citation: ZHANG Tian-si, ZHU De-ming. Bifurcations of Double Homoclinic Flip Orbits With Resonant Eigenvalues[J]. Applied Mathematics and Mechanics, 2007, 28(11): 1353-1362.

# Bifurcations of Double Homoclinic Flip Orbits With Resonant Eigenvalues

• Received Date: 2006-08-29
• Rev Recd Date: 2007-08-06
• Publish Date: 2007-11-15
• Concerns double homoclinic loops with or bitflips and two resonant eigenvalues in a fourdimensional system. We use the solution of a normal form system to construct a singular map in some neighborhood of the equilibrium, and the solution of a linear variational system to construct a regular map in some neighborhood of the double homoclinic loops, then compose them to get the important Poincar map. A simple calculation gives explicitly an expression of the associated successor function. By a delicate analysis of the bifurcation equation, we obtain the condition that the original double homoclinic loops are kept, and prove the existence and the existence regions of the large 1-homo clinic orbit bifurcation surface, 2-fold large 1-periodic or bit bifurcation surface, large 2-homoclinic or bit bifur cation surface and their appro ximate expressions. We also locate the large periodic orbits and large homoclinic orbits and their number.
•  [1] Chow S N,Deng B, Fiedler B. Homoclinic bifurcation at resonant eigenvalues[J].J Dyn Syst Diff Eqs,1990,2(2):177-244. [2] HAN Mao-an, CHEN Jian.On the number of limit cycles in double homoclinic bifurcations[J].Sci China,2000,43(9):914-928. [3] JIN Yin-lai, ZHU De-ming.Bifurcation of rough heteroclinic loop with two saddle points[J].Sci China,2003,46(4):459-468. [4] TIAN Qin-ping,ZHU De-ming.Bifurcation of nontwisted heteroclinic loop[J].Sci China,Ser A,2000,43(8):818-828. [5] ZHU De-ming,XIA Zhi-hong.Bifurcation of heteroclinic loops[J].Sci China,Ser A,1998,41(8),837-848. [6] Sandstede B.Verzweigungstheorie Homokliner Verdopplungen[D].Ph D Thesis.Berlin:Freie Universitat Berlin,1993.Institut fur Angewandte Analysis und Stochastic[R]. Report No.7, Berlin. [7] Sandstede B.Constructing dynamical systems having homoclinic bifurcation points of codimension two[J].J Dyn Diff Equs,1997,9(2):269-288. [8] Homburg A J,Krauskopf B.Resonant homoclinic flip bifurcations[J].J Dyn Diff Eq,2000,12(4):807-850. [9] Oldeman B E,Krauskopf B, Champneys A R. Numerical unfoldings of codimension-three resonant homoclinic flip bifurcations[J].Nonlinearity,2001,14(3):597-621. [10] ZHANG Tian-si, ZHU De-ming. Codimension 3 homoclinicbifurcation of orbit flip with resonant eigenvalues corresponding tothe tangent directions[J].Int J Bifurcation Chaos,2004,14(12):4161-4175. [11] ZHANG Tian-si, ZHU De-ming.Homoclinic bifurcation of orbit flip with resonant pricipal eigenvalues[J].Acta Math Sin Engl Ser,2006,22(3):855-864. [12] SHUI Shu-liang, ZHU De-ming.Codimension 3 bifurcations of homoclinic orbits with orbit flips and inclination flips[J].Chin Ann Math,2004,25B(4):555-566. [13] SHUI Shu-liang,ZHU De-ming.Codimension 3 nonresonant bifurcations of homoclinic orbits with two inclination flips[J].Sci China,Ser A,2005,48(2):248-260.

### Catalog

###### 通讯作者: 陈斌, bchen63@163.com
• 1.

沈阳化工大学材料科学与工程学院 沈阳 110142

## Article Metrics

Article views (2303) PDF downloads(679) Cited by()

/