Abstract:
In an underwatershock environment, cavitation occurs near the structural surface. The dynamic response of fluidstructure interaction is influenced seriously by the cavitation effects. It is also the difficulty in the field of underwater explosion. With traditional boundary element method and finite element method (FEM), it is difficult to solve the nonlinear problem with cavitation effects subjected to underwater explosion. To solve this problem, in consideration of the cavitation effects and fluid compressibility, with fluid viscidity neglected, a 3D numerical model of transient nonlinear fluid-structure interaction subjected to underwater explosion was built. Fluid spectral element method (SEM) and finite element method were adopted to solve this model. After comparison with FEM, it is shown that SEM is more precise than FEM, and the SEM results are in good coincidence with benchmark results and experiment results. Based on this, combined with ABAQUS, the transient fluidstructure interaction mechanism of 3D submerged spherical shell and ship stiffened plates subjected to underwater explosion were discussed, and the cavitation region and its influence on the structural dynamic responses were presented. The reference for relevant researches on transient fluidstructure interaction of ship structure subjected to underwater explosion is provided.