2023, 44(6): 629-642.
doi: 10.21656/1000-0887.430328
Abstract:
The VOF method was used to numerically study the upward motion of a single bubble in viscoelastic fluid, and the Oldroyd-B model was applied to describe the fluid viscoelastic property. At low Weissenberg numbers (Wi≤1), the effects of the viscous force, the relaxation time, the surface tension and the viscosity ratio on the rising motion of the bubble were studied. The results show that, under relatively large viscous and elastic forces (such as Ga=2, Wi≥0.5 and β=0.2), the bubble exhibits the phenomenon of "a pointed rear end", and this phenomenon intensifies with the increase of the elasticity and the decrease of the surface tension. Otherwise, under a relatively weak elasticity (such as Wi=0.1), the phenomenon of "a pointed rear end" disappears, and the bubble bears a hat-like shape. For a large surface tension (such as Eo=1), the bubble bears a longitudinally elongated ellipse-like shape without distinct tail features. The effect of the surface tension on the bubble in viscoelastic fluid is like that in viscous fluid. The bubble has 2 types of rising motions, namely, "continuous acceleration" to a stable velocity and "acceleration-deceleration-reacceleration" to a stable velocity, and the bubble rising velocity in viscoelastic fluid is higher than that in pure viscous fluid. The elastic stress around the bubble is influenced by the viscosity and the relaxation time of the fluid, and with the decrease of the fluid viscosity or/and the increase of the relaxation time, the incidence of the elastic stress becomes wide.