CHENG Ya-ping, LI Zhi-gang, ZHANG Qiang. Mathematical Models for Deformation Between Steel Strand Wires and Induction Heating Effects[J]. Applied Mathematics and Mechanics, 2016, 37(9): 915-923. doi: 10.21656/1000-0887.370010
 Citation: CHENG Ya-ping, LI Zhi-gang, ZHANG Qiang. Mathematical Models for Deformation Between Steel Strand Wires and Induction Heating Effects[J]. Applied Mathematics and Mechanics, 2016, 37(9): 915-923.

# Mathematical Models for Deformation Between Steel Strand Wires and Induction Heating Effects

##### doi: 10.21656/1000-0887.370010
Funds:  The National Natural Science Foundation of China(51578208)
• Rev Recd Date: 2016-05-10
• Publish Date: 2016-09-15
• The calculation model for deformation between wires was derived based on the Hertz contact theory and the structural characteristics of steel strands, and the contact area width between steel strand wires in the induction heating process was calculated with this model, which helped establish a precise finite element model for the induction heating of steel strands. Then the temperature fields in the steel strand under induction heating were simulated with the finite element method, where temperature data at different current densities and frequencies were given. Through the regression analysis of the temperature data, the average relative errors were used to evaluate the quality of several mathematical fitting models, so the optimal mathematical model for induction heating effects was found. The present work provides a theoretical basis for the control of the induction heating temperature in steel strands based on the classical control theory.
•  [1] 马军, 葛世荣, 张德坤. 钢丝绳股内钢丝的载荷分布[J]. 机械工程学报, 2009,45(4): 259-264.(MA Jun, GE Shi-rong, ZHANG De-kun. Load distribution on the unit of the wire rope strand[J]. Journal of Mechanical Engineering,2009,45(4): 259-264.(in Chinese)) [2] 马军, 葛世荣, 张德坤. 钢丝绳股内钢丝应力-应变分布的计算模型及数值模拟[J]. 机械工程学报,2009,45(11): 277-282.(MA Jun, GE Shi-rong, ZHANG De-kun. Calculating model and numerical simulation of stress-strain distribution of wires within strands[J]. Journal of Mechanical Engineering,2009,45(11): 277-282.(in Chinese)) [3] WANG Xiao-yu, MENG Xiang-bao, WANG Ji-xin, SUN You-hong, GAO Ke. Mathematical modeling and geometric analysis for wire rope strands[J]. Applied Mathematical Modelling,2015,39(3/4): 1019-1032. [4] 任志乾, 于宗乐, 陈循, 王岩磊. 基于弹塑性本构的单股钢丝绳受力分析[J]. 兵工学报, 2015,36(9): 1782-1789.(REN Zhi-qian, YU Zong-yue, CHEN Xun, WANG Yan-lei. Stress analysis of single-strand wire rope based on elastic-plastic constitutive model[J]. Acta Armamentarii,2015,36(9): 1782-1789.(in Chinese)) [5] 陈璨. 斜拉索平行钢丝摩擦系数及正压力分析[D]. 硕士学位论文. 重庆: 重庆交通大学, 2011: 62-77.(CHEN Can. Analysis on the friction coefficient and the pressure between parallel steel wires of the stay-cables[D]. Master Thesis. Chongqing: Chongqing Jiaotong University, 2011: 62-77.(in Chinese)) [6] 燕海蛟. 斜拉索内钢丝间弯曲滑移数值模拟及分析[D]. 硕士学位论文. 重庆: 重庆交通大学, 2013: 16-26.(YAN Hai-jiao. Numerical simulation and analysis of bending cable slip between steel wires[D]. Master Thesis. Chongqing: Chongqing Jiaotong University, 2013: 16-26.(in Chinese)) [7] 王应军, 李卓球, 宋显辉. 钢绞线弹性模量的理论计算及其影响因素分析[J]. 武汉理工大学学报, 2004,26(4): 80-82.(WANG Ying-jun, LI Zhuo-qiu, SONG Xian-hui. Theoretical computing & analysis affecting factors on stranded wire’s elastic module[J]. Journal of Wuhan University of Technology,2004,26(4): 80-82.(in Chinese)) [8] 钟卫洲, 宋顺成, 陈刚, 黄西成, 黄鹏. 正交各向异性圆柱体在轴压作用下的应力场[J]. 应用数学和力学, 2010,31(3): 285-294.(ZHONG Wei-zhou, SONG Shun-cheng, CHEN Gang, HUANG Xi-cheng, HUANG Peng. Stress field of orthotropic cylinder subjected to axial compression[J]. Applied Mathematics and Mechanics,2010,31(3): 285-294.(in Chinese)) [9] 赵前哲, 柳亦兵, 刘衍平, 周伟松. 铁磁性材料感应加热过程的数值分析[J]. 材料热处理学报, 2012,33(3): 151-155.(ZHAO Qian-zhe, LIU Yi-bing, LIU Yan-ping, ZHOU Wei-song. Numerical analysis for induction heating process of ferromagnetic materials[J]. Transactions of Materials and Heat Treatment,2012,33(3): 151-155.(in Chinese)) [10] Kurose H, Miyagi D, Takahashi N, Uchida N, Kawanaka K. 3-D eddy current analysis of induction heating apparatus considering heat emission, heat conduction, and temperature dependence of magnetic characteristics[J]. IEEE Transactions on Magnetics,2009,45(3): 1847-1850. [11] Boadi A, Tsuchida Y, Todaka T, Enokizono M. Designing of suitable construction of high-frequency induction heating coil by using finite-element method[J].IEEE Transactions on Magnetics,2005,41(10): 4048-4050. [12] 张强, 吴增光, 周颖. 感应加热电源温度控制算法的仿真[J]. 计算机仿真, 2012,29(8): 167-170, 174.(ZHANG Qiang, WU Zeng-guang, ZHOU Ying. Simulation of temperature control algorithm of induction heating power supply[J]. Computer Simulation,2012,29(8): 167-170, 174.(in Chinese)) [13] 周仲荣, L·Vincent. 微动磨损[M]. 北京: 科学出版社, 2002: 11-14.(ZHOU Zhong-rong, Vincent L. Micro-Moving Abrasion[M]. Beijing: Science Press, 2002: 11-14.(in Chinese)) [14] 程亚平, 李志刚, 张强. 多目标遗传算法在感应加热电气参数优化中的应用[J]. 河北工业大学学报, 2015,44(1): 1-5.(CHENG Ya-ping, LI Zhi-gang, ZHANG Qiang. Application of multi-objective genetic algorithms to optimize induction heating electrical parameters[J]. Journal of Hebei University of Technology,2015,44(1):1-5.(in Chinese)) [15] 徐婕. 二元线性回归分析法在牛顿第二定律验证实验中的应用[J]. 大学物理, 2004,23(6): 37-39, 58.(XU Jie. The application of dualistic linearity regression in the verification experiment on Newton second law[J]. College Physics,2004,23(6):37-39, 58.(in Chinese)) [16] 时立文. SPSS19.0统计分析从入门到精通[M]. 北京: 清华大学出版社, 2013: 168-188.(SHI Li-wen. SPSS〖STBX〗19.0 Statistical Analysis From Entry to Master [M]. Beijing: Tsinghua University Press, 2013: 168-188.(in Chinese))

### Catalog

###### 通讯作者: 陈斌, bchen63@163.com
• 1.

沈阳化工大学材料科学与工程学院 沈阳 110142